Difference between revisions of "Alice"

From CSWiki
Jump to: navigation, search
m
m
Line 2: Line 2:
  
 
[http://www.pandamagazine.com/island/island5/alice.pdf]
 
[http://www.pandamagazine.com/island/island5/alice.pdf]
 +
 +
==Table==
 +
# D1 = 1
 +
# A1 = 2
 +
# N1 = 3
 +
# D2 = 4
 +
# I1 = 1
 +
# E1 = 1
 +
# S1 = 1
  
 
==Reasoning==
 
==Reasoning==
  
# ANDRIES=21 and DANDIES=13 => R-D = 8.   
+
# If a sequence of 3, then the smallest the base of the sequence, b, must be b+(b+1)+(b+2) +1+1+1+1 <= 13.  Thus, 3*b+7 <= 13.  b <= 2. If it's a 4-sequence, then we have b+(b+1)+(b+2)+(b+3)+1+1+1 <= 13.  4*b+9 <= 13.  b <= 1. 
#
+
# DANDIES=13.  Speculate:
 +
## Assume that we have a 4-sequence.
 +
### Assume that the sequence is first.  Then D1=1,A1=2,N1=3,D2=4,I1=1,E1=1,S1=1.
 +
### Apply this information to PRAISED=13.   
 +
#### If D=D2, then the sequence must end there, and we must have 1+1+1+1+2+3+4.  Giving us  P1=1,R1=1,A2=1,S2=2,E2=3.

Revision as of 16:01, 22 August 2006

Puzzle_Boat

[1]

Table

  1. D1 = 1
  2. A1 = 2
  3. N1 = 3
  4. D2 = 4
  5. I1 = 1
  6. E1 = 1
  7. S1 = 1

Reasoning

  1. If a sequence of 3, then the smallest the base of the sequence, b, must be b+(b+1)+(b+2) +1+1+1+1 <= 13. Thus, 3*b+7 <= 13. b <= 2. If it's a 4-sequence, then we have b+(b+1)+(b+2)+(b+3)+1+1+1 <= 13. 4*b+9 <= 13. b <= 1.
  2. DANDIES=13. Speculate:
    1. Assume that we have a 4-sequence.
      1. Assume that the sequence is first. Then D1=1,A1=2,N1=3,D2=4,I1=1,E1=1,S1=1.
      2. Apply this information to PRAISED=13.
        1. If D=D2, then the sequence must end there, and we must have 1+1+1+1+2+3+4. Giving us P1=1,R1=1,A2=1,S2=2,E2=3.