Difference between revisions of "Alice"

From CSWiki
Jump to: navigation, search
m (Table)
m
 
(13 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
==Table==
 
==Table==
# D = 1,2
+
{| border=1
# A = 1,3
+
| 1 || D || S || I || E
# N = 4
+
|-
# I = 1
+
| 2 || P || Y || E || D
# E = 1, (9 or 10)
+
|-
# S = 1
+
| 3 || R || A || E || S
 +
|-
 +
| 4 || A || N || B || T
 +
|-
 +
| 5 || D || I || R ||
 +
|-
 +
| 6 || R || O || W || N
 +
|-
 +
| 7 || A || M || E || G
 +
|-
 +
| 8 || A
 +
|-
 +
| 9 || S
 +
|-
 +
| 10 || P || R || T || E
 +
|-
 +
| J || I || R || L || E
 +
|-
 +
| Q || N || O || T || V
 +
|-
 +
| K || C || U || R || Y
 +
|}
  
==Reasoning==
 
  
# TROUBLE=67.  For a 4 sequence, b,b+1,b+2,b+3,x,x,x; b=10 => x = 9; b=9 impossible; b=8 => x = 10.  For a 3 sequence, b,b+1,b+2,x,x,x,x;  b=10 impossible; b = 9 impossible; b = 8 => x=10.  E1 = 9 or 10.
+
Another 70 pointer is 10JQK101010 = '''trouper'''
# If a sequence of 3, then the smallest the base of the sequence, b, must be b+(b+1)+(b+2) +1+1+1+1 <= 13.  Thus, 3*b+7 <= 13.  b <= 2. If it's a 4-sequence, then we have b+(b+1)+(b+2)+(b+3)+1+1+1 <= 13.  4*b+9 <= 13.  b <= 1. 
 
# DANDIES=13.  Speculate:
 
## Assume that we have a 4-sequence.
 
### Assume that the sequence is first.  Then D1=1,A1=2,N1=3,D2=4,I1=1,E2=2,S1=1.
 
### Apply this information to PRAISED=13. 
 
#### If D=D2, then the sequence must end there, and we must have 1+1+1+1+2+3+4.  Giving us  P1=1,R1=1,A2=1,S2=2,E2=3.  A contradiction (because of E).
 
#### Then D=D1.  Then the last three must be 1 => E2=1.  A contradiction.
 
### Pop.  Assume that the sequence is second.  Then D1=1,A1=1,N1=1,D2=1,I1=2,E2=3,S1=4.  Again, applying to praised yields the same contradiction that E2=1. 
 
## Pop.  We must have a 3 sequence.
 
### Assume that b=1.  Then 4*x+3*b+3 = 13.  4*x=7.  Impossible.
 
### Assume that b=2.
 
#### Assume that the sequence is second.  Then I1=2,E2=3,S1=4,D1=1,A1=1,N1=1,D2=1.  But when applied to PRAISED, E2=1 a contradiction. 
 
#### Assume that the sequence is first.  Then D1=2,A1=3,N1=4, D2=1, I1=1, E2=1,S1=1. 
 
##### Apply to PRAISED.  No matter what, the triplet must be last then.  If D=D1, then E2=2 and we have a contradiction.  Thus, D=D2, E2=1.
 

Latest revision as of 08:01, 23 August 2006

Puzzle_Boat

[1]

Table

1 D S I E
2 P Y E D
3 R A E S
4 A N B T
5 D I R
6 R O W N
7 A M E G
8 A
9 S
10 P R T E
J I R L E
Q N O T V
K C U R Y


Another 70 pointer is 10JQK101010 = trouper