TigerNest: Event Organizer and Host Flow
Simplifying Overnight Host-Visitor Pairing at Princeton

Niranjan Shankar
Princeton University, Class of 2020
Spring 2019 Independent Work Project
Advisor: Dr. Robert Dondero

Abstract

Currently, organizing overnight events at Princeton is a cumbersome process for student
organization leaders (event organizers), as they are burdened with manually pairing Princeton
student volunteers (hosts) with overnight guests (visitors). This paper will discuss a web
application developed over the course of the semester, called TigerNest, to address this
inconvenience and simplify the process of facilitating events and finding overnight
accommodation at Princeton. Through TigerNest, event organizers will be able to create events
that hosts and visitors will be able to sign up for. In this sign up process, hosts volunteer their
rooms and specify their room capacity and gender preferences, and visitors can sign up for their
rooms as per their gender preferences. This approach was chosen in order to meet the various
requirements of hosts and visitors while also giving visitors the flexibility to choose their
accommodation overnight. This web application consists of three separate paths or “flows”: the
event organizer, host, and visitor flows. This paper will discuss the event organizer and host
flows, which was the primary focus of this project, though some aspects of the visitor flow will be
discussed for clarification. This project was done in conjunction with another independent

project from this semester - TigerNest: Visitor Flow.

1. Introduction

Overnight accommodation is an integral, yet extremely complicated, aspect of organizing
successful, large-scale events at Princeton. In addition to facilitating the event itself, many
student organizations leaders are also burdened with matching overnight visitors with Princeton
hosts manually. This typically entails gathering information from hosts and visitors, and then
making arrangements to satisfy preferences and requirements on both ends. Currently, there are
few resources at the University to streamline this process, and whatever platform that does exist
is limited to one specific student organization [1].

TigerNest: Event Organizer and Host Flow aims to resolve these issues by allowing
visitors to sign up for rooms that Princeton hosts have volunteered to provide on the platform.
This would leave the event organizer with the sole responsibility of “creating” the event and
specifying event details. Moreover, the work required by visitors and hosts on the application
would be more or less identical compared to the current process; in both scenarios, they are
required to input basic identification information as well as preferences regarding their room
type, though on TigerNest visitors will have the additional step of selecting the room once the
visitor sign-up phase is in progress.

The development of this project can be broken down into four separate stages -
requirements gathering, design, development, and evaluation. During the requirements gathering
phase, the overall expectations of the application and additional caveats regarding the host
matching process were determined based on conversations from representatives of various
student organizations. Next, sketches and diagrams of the User Interface were designed to

establish a rough idea of how the website will meet all of these requirements. The development

phase consisted of coding the full-stack implementation of the event-organizer and host flows
which were designed. Finally, after the application was deployed on a live server and tested by
the developers, the representatives from the initial student organizations were asked to give

feedback on the final product with specified instructions for navigating the platform.

2. Related Work
2.1 HackMIT
As mentioned previously, there is currently a platform to match hosts with overnight

visitors for overnight accommodation, specifically for Hack Princeton, a hackathon hosted twice
a year at the University that spans a total of three days [1]. Through this application, called
“Localhost,” hosts and visitors register on the website and are automatically matched with
visitors via a max-flow algorithm [1]. This approach is based off of Hack MIT matching
platform, though with some modifications, as will be discussed.

Max-Flow algorithms are a type of network flow algorithm, and are thus usually used in
scenarios with directed graphs (collections of vertices and edges, where each edge has a
specified direction) that have edge-capacities [2]. Each path through the graph, starting from a
source vertex and ending at a sink vertex, is called a “flow,” and each flow has its own capacity
(similar to a pipe network where each pipe can handle a certain “flow” volume of water) [2]. The
purpose of the max-flow algorithms such as Ford-Fulkerson and Edmonds-Karp is to maximize
the total “volume” of the flow through the entire system while respecting each of the edge

constraints [2].

Figure 1 depicts how the max-flow algorithm applies to the matching process for Hack
MIT. The developers designate a “virtual source” directly connected to all the hosts, and a
“virtual sink” directly connected to all the edges [2]. The edges from the source to the hosts
represents their “host capacity,” or the maximum number of hackers they would be willing to

accommodate.

Virtual
Source

Hosts

Hackers

Virtual
Sink

Figure 1: Hack MIT’s graph representation of max-flow matching between hosts and
visitors

The graph in Figure 1 is a “bipartite graph,” meaning that all the vertices are among two
disjoint sets - the Hacker set and Host set. The specific maxflow implementation used by the

Hack MIT developers is the Edmonds-Karp algorithm [3].

The main advantage of the Hack MIT Edmonds-Karp implementation is that it ensures
that all the Hackers are matched to a particular host, as opposed to a greedy algorithm that
simply loops over each of the hackers and matches them to a host that is available [3]. Moreover,
there is essentially no work done on the host or hacker side in the process besides signing up on
the platform, as the pairings are all done automatically via the back-end algorithm.

2.2 Hack Princeton

As shown in Figure 2, Hack Princeton’s Localhost uses the same general graph structure
to represent pairings between Hosts and Hackers - a bipartite structure with a source vertex
connected to the hosts, and sink vertex connected to the hackers [2]. However, in order to add an
element of fairness in the matching process, ensuring that the Hackers are fairly evenly
distributed among the Hosts, Localhost adds additional capacity to the hosts that can take on
more visitors, and then uses a “best first search” algorithm, which is similar to the greedy
algorithm except that decisions can be revised and updated [4], as opposed to Edmonds-Karp [2].
Moreover, Localhost also takes gender preferences into account by deleting hostings
mid-algorithm if same-gendered rooms have visitors of both genders [2].

As with the Hack MIT approach, Hack Princeton’s localhost has the advantages of
ensured matching for all the hosts as well as minimal responsibility for hosts and hackers.
Additionally, the pairings are fairly distributed among the different hosts throughout the process
while also respecting gender preferences on both ends. However, one of the weaknesses of their
approach that the organizers mentioned in an in person meeting is that the algorithm gives a

preference to the visitors with the same-gender restriction by matching them first. This was done

in order to ensure that visitors with the same-gender restriction are not left out during the

process.

Virtual
Source

Hosts

Hackers

Virtual
Sink

Figure 2: Hack Princeton’s addition to MIT’s graph representation, with increased edge capacity
for hosts that can accommodate multiple hackers

2.3 Airbnb

Airbnb is an online marketplace used worldwide where people book properties or rooms
that hosts have rent out.! Upon landing on the homepage, the guest specifies a specific date, the
number of guests they will be having, and a particular city around the world. Based on this
criteria, they are directed to a page will all the available rooms, with the prices of each displayed.

The guest can further inspect a particular room based on pictures and additional notes provided

' "Airbnb." https://www.airbnb.com/. Accessed 6 May. 2019.

https://www.airbnb.com/

by the host, and then books the room and provides payment information. If one wishes to host,
they navigate to the “become a host” section of the website and enter all the information about
their place of stay that visitors should be aware of.

Part of the popularity of Airbnb is that it grants visitors the freedom to choose the place
in which they are staying overnight, while also maintaining an extremely straightforward process
for all types of users. The approach of TigerNest is inspired by this flexibility and simplicity
Airbnb offers on its platform. Throughout the course of the project, it was ensured that the Event

Organizers and Hosts sides of the application would have simple and intuitive flows.
3. Requirements Gathering

As mentioned in Section 1, the first and perhaps most significant stage of the project was
the requirements gathering phase, where the heads of several student organizations were met to
determine the overall structure of the application and the baseline features that it should
implement. The student organizations were: Hack Princeton, Princeton Debate Panel,
TigerLaunch, Princeton Envision, Club Swim, and Princeton Model United Nations, which are
the primary organizations on campus that host overnight events. The project was also discussed
with the Princeton Undergraduate Student Government (USG) TigerApps chair to determine
what would be required for the project to be recognized as a TigerApp, as becoming a TigerApp
will give the application a sense of legitimacy. Moreover, it was also suggested by Dr. Dondero
to use the procedures outlined in Interaction Design: Beyond Human-Computer Interaction by
Yvonne Rogers, Helen Sharp, Jennifer Preece while establishing requirements. As specified in

Chapter 10 of Interaction Design, the three types of requirements that were gathered during this

process were Functional Requirements, Data Requirements, and Environmental Requirements
[5].
3.1 Functional Requirements

In terms of what actions the system should be able to perform, it was initially expected
that we would need a platform where event organizers can create events, hosts can volunteer
their rooms for those events, and visitors would sign up for their rooms. However, the
organization heads also gave additional caveats about the host matching process that they felt the
developers should be aware of. For instance, in many of these events, it is very common for hosts
and visitors to drop out last minute, and thus the organization heads advised that we give users
on all ends flexibility to drop out of the event last minute, or in the event organizers case, cancel
the event altogether. Moreover, these organization heads also stated receiving emails in the last
minute regarding changes in their room detail. For instance, a host may suddenly decide that they
can take on more visitors after they discover their roommate will not be on campus for the
weekend. An event organizer may also want to edit the location details or expected visitor
account at some point during the process. Thus, it was suggested that having these edit features
would beneficial to the users as well. Additionally, there needs to be some sort of data
verification on the Event Organizer path that ensures that the student who logged in is indeed the
head of an organization - in other words, a simple CAS authentication may not be enough, since
a Princeton host may not necessarily be a student organization leader. The Hack Princeton
organizers also mentioned their algorithm weighs visitors with same gender restrictions over
visitors without those restrictions, and advised that the TigerNest implementation of the

matching process avoids this bias, but at the same time ensure that same-gender visitors do not

get left out in the process. Finally, many student organization heads recommended to leave
payment options outside of the system, as subsidies and prizes for hosts are typically handled
informally by members of the hosting organization.
3.2 Data Requirements

As with any other technical project handling data, there should be a steady, two-way
flow of information between the back end and front end side of the application. In terms of how
frequently the application would be used, there is not expected to be a large number of users on
the site at a given point in time throughout the year, as there are around three or four overnight
events being hosted each semester. However, some of these events, such as Hack Princeton and
Princeton Debate Tournament, are large-scale, and thus the server should be able to robustly
handle a large volume of hosts signing up for a given event at the same time.
3.3 Environment Requirements

The environment requirements, specifically, the technical environment requirements,
were determined after meetings with the chair (head) of USG TigerApps Committee. According
to the TigerApps Chair, TigerApps is requiring that all the applications it sponsors are developed
with React.js, a front-end javascript framework, so that they can be more easily maintained.
Additionally, the application must also be hosted on an AWS server in order to become a
TigerApp, as this tends to be the most cost efficient service to host web applications and store
data.? This applies both for applications that are under development, as well as applications that
are currently hosted as TigerApps but with different frameworks - thus, this applications need to

be shifted over to React.js and AWS in order to continue being hosted on the platform.

2"Amazon Web Services (AWS) - Cloud" https://aws.amazon.com/. Accessed 6 May. 2019.

https://aws.amazon.com/

4. Approach

4.1 Three Flows

In the previous section, three other platforms that pair guests with hosts were discussed.
Among these three, Airbnb is the most closely related work to our platform, as TigerNest also
expects visitors to select a particular room rather than automating the pairing process.
Nevertheless, some aspects of Localhost and HackMIT application are incorporated in the
project. Like Localhost, the host’s gender preferences were collected to determine whether or not
they were comfortable with members of the opposite sex staying in their room. Moreover, our
platform also tries to prevent same-gender visitors from being left out by giving them a slight
preference in the room selection process, but attempts to mitigate the extent of the bias that was
present on Localhost (this was primarily handled in the implementation of ZigerNest: Visitor
Flow).

Based on the information collected during the requirements gathering phase, the most
sensible approach was to break the application down into three separate “flows,” or paths - the
Event Organizer flow, Princeton Host flow, and overnight Visitor flow. Specifically, this project
focuses on the design and implementation of the Event Organizer and Host flow, though all three
flows are interconnected and share the same back end database.

Since the event organizers and hosts are required to be Princeton students, CAS
authentication is required in order to progress in either of these flows. The event organizer
branch of the application uses an additional authentication layer to verify that the student is

indeed the head of an organization, as mentioned in Section 3.1 - if the student’s Princeton netid

10

is not recognized by the system, they are directed to a registration page that requires a
“registration code,” which can only be obtained by meeting with the students managing the
website (Niranjan Shankar and Michelle Yuen, or the TigerApps chair if the application is to be
approved). Upon verifying that the student is indeed an organization head, they will be given the
registration code and can proceed through the entire event organizer path.

In order to satisfy the USG TigerApp requirements, it was decided that the front-end
would be developed with the React.js front-end framework, hosted on an Express.js server (part
of the Node.js javascript javascript server framework commonly used with React).’ As there was
not a particular requirement regarding the back-end, the application uses PostgreSQL due to its
compatibility with various deployment software, such as Heroku* and Amazon RDS,’ and since a
relational database format was the most appropriate for representing the data for event organizer,
host, events, and matchings.

In terms of deployment, the initial goal that was established was deployment to an AWS
server. However, upon investigating other applications at Princeton, it was decided that
deployment to Heroku should be the primary goal of the application, and deployment to AWS
should be labeled as a “stretch” or “reach” goal.

4.2 User Interface Design

As stated in Section 1, before the actual development of the application, the user interface

for the entire event organizer and host flows was designed on pencil and paper sketches. Each

possible scenario in both paths were brainstormed. The designs were helpful in ensuring that the

3 "Create a New React App — React." https://reactjs.org/docs/create-a-new-react-app.html. Accessed 6
May. 2019.

4 "Heroku Postgres." https://www.heroku.com/postgres. Accessed 6 May. 2019.

5 "Amazon RDS for PostgreSQL — Amazon" https://aws.amazon.com/rds/postgresgl/. Accessed 6 May.
2019.

11

https://reactjs.org/docs/create-a-new-react-app.html
https://www.heroku.com/postgres
https://aws.amazon.com/rds/postgresql/

developed application would be able to carry out all of the core functionality features while still
maintaining a simple and intuitive flow. Figure 3 represents an example of a sketch for one of the

pages on the Event Organizer path.

Hocla P (wgedTn
1]

—

3)as-3127

Griond (eiv ¥2:Q0
}.:;\Q«} Q AL —'ll" =g t
\doch PRLICT

L! S\)'\e&a \S\txit\'*\‘rcgss)

—

Figure 3: A sketch of the “My Events” page on the Event Organizer Path from the User

Interface Design Phase, showing an event in the “Completed” phase

5. Implementation

5.1 Breakdown
The web application was developed as a team composed of two individuals - myself,
Niranjan Shankar, and Michelle Yuen, whose projects were TigerNest: Event Organizer and Host

Flow, and TigerNest: Visitor Flow, respectively.

12

Each of us were responsible for the full-stack implementation of each of our respective
paths, all from the database layer, to the servers, and the client side. Endpoints were added to the
same database API by the individual using that particular endpoint. Since the visitor-flow server
did not use CAS Authentication, the server for the event organizer and host path was kept
separate from the server handling the pages on the visitor flow. Each of us also separately
developed the frontend pages that were specific to our paths.

5.2 System Architecture

Event Organizer Client-Side Host Client-Side Overnight Visitor Client-Side
React [\E)(TJS React [\EXTJS React ’\E)(TJS
R nede nede

. Tiger-Nest Server
Central Authentication Service Tlger—NestZ Server GXDI’GSS d expreSS

1| l |
ostgreSQL (EfSk AP gQLMChemx

Figure 4: System Architecture
Figure 4 represents the overall structure of the entire application. The aspects that were
pertinent to TigerNest: Event Organizer and Host Flow were the API, Tiger-Nest2 server, and the

Event Organizer and Host client sides. The database was hosted on a PostgreSQL server with

13

Python Flask, and was queried using SQLAIchemy, a Python SQL toolkit.® The Tiger-Nest2
express server facilitates GET and POST requests between the database and the frontend, and
also handles all the pages on the event organizer frontend, while also ensuring that the user is
authenticated via the Princeton Central Authentication Service. The Event Organizer Client Side
and Host Client Side both use React.js for displaying the User Interface, as well as Next.js, a
JavaScript framework used to handle routing between pages on the frontend that is often used in
conjunction with React.js’.

5.3 Front-End

As summarized in Section 5.2, the User Interface of the application was designed using
React.js and Next.js. Typically, a React.js application is broken down into “Components” and
“Pages,” with each page consisting of one or several components, as well as additional functions
for handling those components. For instance, the navigation bars were organized as a component
in the nav.js and hostNav.js files, and imported on the pages displaying them.

Other pertinent libraries used throughout the front-end development were ReactStrap, a
library that provides the developers with Bootstrap components to organize the interface®, and
helped make the User Interface more aesthetic and navigable. A common theme throughout the
client side is representing the “events” as the ReactStrap Card Component, and asking the user to
specify information via the ReactStrap Modal. Figure 5 gives a visual example of this theme.

The js-Cookie library was used to send information regarding the organizer’s netid from
the express server to the React frontend, which then ensure that the events and hostings being

displayed on the platform were unique to that Event Organizer and Host. Moreover, for the Event

6 "SQLAIchemy - The Database Toolkit for Python." https://www.sglalchemy.org/. Accessed 6 May. 2019.
7 "Next.js." https://nextjs.org/. Accessed 6 May. 2019.
8 "Reactstrap." https://reactstrap.qgithub.io/. Accessed 6 May. 2019.

14

https://www.sqlalchemy.org/
https://nextjs.org/
https://reactstrap.github.io/

Organizer path, the netid cookie was also used to verify whether or system recognizes the user as

a student leader that was approved by the system managers.

Home MyEvents Logout

My Events

Create a new event

Visitor Signup in Progress

Hack Princeton

Y

Figure 5: The developed “My Events” page of the event organizer flow, with the
“Hack-Princeton” event organized as a card, and tabbing to distinguish between event types.

5.4 Tiger-Nest 2 Server

The Tiger-Nest 2 server is hosted on an express server, and receives all the various
endpoints that may be hit on the Event Organizer and Host sides of the application. The express
server facilitates the requests between the client side and the database, while also validating the
user as a Princeton student via Central Authentication Service (CAS). The express library used to
connect the application to Princeton’s CAS framework is ‘cas’.

The CAS Verification procedure is as follows: a “catch-all” endpoint first redirects to a
“verify” method within the express server file. This method calls a “validate” method using the
‘cas’ library, and assesses whether or not the cas ticket is valid given the user’s credentials. If the

login is successful, the user is redirected to the home page.

15

5.5 Database
The relational database that was used on the back-end was managed with Flask,
SQLAIchemy, and PostgreSQL. The relevant tables of the database for the event organizer and
host paths are as follows:
e Event Organizer (the organization heads that create and manage event objects)
e Event (The event that will be hosted, that hosts and visitors can sign up for)
e Host (General information about the host)
e Pairing (Represents a “room” that was volunteered by a host for a particular event -
contains all the information about the host preferences).
5.6 Deployment
The baseline goal for the deployment of the application was to a heroku server, which
was successfully executed. Separate heroku accounts were created both for the back-end and the

front-end of the application. The backend is hosted at https:/tigernest-backend.herokuapp.com,

whereas the front-end of the TigerNest2 server is hosted at https://tiger-nest2.herokuapp.com

(though the initial home page can be found on the https://tiger-nest.herokuapp.com server).

Heroku databases are generally accepted via one of three management platforms: PostgreSQL,
Redis, and Apache Kafka, which is among the reasons that PostgreSQL was selected for our
backend implementation. For a cleaner deployment procedure, two additional repositories were
created - one designated with front-end deployment, another designated with back-end
deployment. This way, the any errors on the console logs could be more easily distinguished

between errors on the front-end and errors on the back-end.

16

https://tiger-nest.backend.herokuapp.com/
https://tiger-nest2.herokuapp.com/
https://tiger-nest.herokuapp.com/

5.7 Challenges

Perhaps the most challenging obstacle in the development of the application was CAS
Authentication. Currently, most of the resources provided at Princeton regarding CAS validation
are for applications that use python frameworks like Flask and Bottle. Virtually no help was
available through professors or Princeton courses for integrating CAS in an application that uses
frameworks like React and Express. Thus, the first attempts to add this feature to the application
were based on google tutorials, but were unfortunately unsuccessful.

Thankfully, another Princeton student suggested meeting the developer of Princeton
Courses, Mel Shu, to address this dilemma. After two separate meetings (over the span of two
weeks) with Mel, CAS was successfully integrated in our application, with reliable exchange of
cookie-session information from the server side to the front end. Nevertheless, this still drained
much precious time that could have been used to develop other features of the application, and
potentially to meet some of the stretch goals that were abandoned.

Another difficulty encountered over the course of the project was attempting to deploy
the project to Amazon Web Services. After a successful deployment of an early version of the
project to Heroku, an attempt to deploy the project to AWS was made, initially through an
instance on Elastic Beanstalk, which is a widely used AWS Framework to deploy web
applications’. Unfortunately, this was met with various errors that were rather cumbersome to
resolve, such as the formatting of “build” statements and configuration with various AWS
parameters. The next attempt was on an AWS S3, instance, which is a storage software manager

on AWS'. Though a static html page was successfully deployed to the s3 instance that was

® "AWS Elastic Beanstalk — Deploy Web Applications - Amazon.com."
https://aws.amazon.com/elasticbeanstalk/. Accessed 7 May. 2019.
9 "Amazon S3 - AWS - Amazon.com." https://aws.amazon.com/s3/. Accessed 7 May. 2019.

17

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/s3/

created, getting the entire application compatible with s3 would have required restructuring
much the code and the repository, since server side rendering on s3 tends to be rather
complicated with dynamic rendering with servers. Thus, after a week and a half of
experimentations with AWS, it was decided that it would be in the best interest of the project to
temporarily abandon this goal and shift attention on the core functionality features. However, the
main goal of deployment to Heroku was successfully executed, and thus the final version of the
platform is still available for live use by the Princeton community.

It was also worth noting that learning the front end frameworks involved to develop the
application was an initial hurdle. The developer, myself, was not familiar with the typical
structure of React and Express, and thus the first stages of the development phases were rather
slow in terms of progress and efficiency. Moreover, two entire full-stack flows over the span of
the semester was certainly not an easy endeavor to tackle. Nevertheless, after these initial hurdles

were crossed, the development phase started to progress faster.

6. Evaluation

First, the event organizer and host paths of the application were tested and evaluated by

myself, in order to ensure that all the core implementation features were functional and running
smoothly. After addressing various bugs that were detected after deploying the newly updated
code, a MoSCoW assessment was conducted by myself in order to assess whether the application
hits all the functions that were designated as high priority during the requirements gathering

phase.

18

6.1 MoSCoW Assessment

The MoSCoW template allows developers to prioritize different features of the

application into Must Have, Should Have, Could Have, and Won’t Have Features. With respect

to TigerNest: Event Organizer and Host Flow, here are the broken down priorities of the various

features:
e Must Have:

o “Event creation” functions for Event Organizers
o “Sign up to Host” functions for Hosts
o Some method of authenticating users with a username-password system.
o Personalized session - storage for event organizers and hosts.
o Deployment to a live server
o Two-Way flow of data between both ends.
o Hosts must be able to view visitor information

e Should Have:

o

Options to edit and delete hosting or event information

Authentication via Princeton Central Authentication Service

Event organizers can view pairing information between hosts and visitors
Smooth routing between pages

An satisfactory User Interface.

e Could Have:

o

(@]

Deployment to an Amazon Web Services Server

Functions for hosts to sort for events between specific dates

19

o Event Organizers can automatically send email notifications to hosts and visitors
through the platform.

o Professional-looking User Interface

o Options to have an automated pairing process if the event organizer wishes.

o Image uploading options for the hosts and visitors.

e Won’t have:

o Will not handle payments from event organizers to hosts
Based on these outlines, it appears that TigerNest: Event Organizer and Host Flow meets all of
the core “must have” features as well as the “should have” features. The system can be used by
event organizers to organize overnight events, and by Princeton hosts to volunteer their rooms
for overnight accommodation for the visitors attending these events.

Needless to say, the experience of users on the platforms could certainly be enhanced if
the could have features, such as a more professional looking Ul and options to sort and filter
based on the start dates for the event. It would also be convenient if event organizers had an
option to send out emails to mass listservs with the click of a button. However, as these are only
“could have” priority level features, they do not take away from the main functionality and the
primary goals of the system.

6.2 External User Evaluation

An external user from one of the potential client organizations, Princeton Debate Panel,

was asked to perform a series of tasks and offer feedback while navigating the platform. The list

of tasks is described in the following section. Questions and comments that the user made were

20

recorded and considered. These comments regarded logic bugs in the application, potential
improvements to the User Interface, and additional functionalities that could be set in place.

e After reaching home page, the user tried entering the host path of the application before
receiving the instruction to attempt the Event Organizer Path first. It was discovered that
logging into CAS via the host path first inadvertently directs to a page on the Event
Organizer Path. This was recorded as a bug.

e The user entered the event organizer aspect of the platform and was redirected to the
Event Organizer Registration page. The user asked for the purpose of the page, and upon
hearing the explanation, agreed that this was a useful mechanism for distinguishing
between Princeton students and organization heads.

e After entering the registration code, the user was then able to enter the “My Events”
page, and almost immediately clicked the “Create an Event” button. This suggested that
they understood the overall flow of the page and found the page intuitive.

e The user was asked to submit the form without entering in all the mandatory inputs, and
to confirm that an alert window popped up. This confirmation was positive.

e The user created their event, with a name of their choice, and then asked if they should
put the event in the Visitor Sign-Up phase, and further requested an explanation of what
the visitor sign-up phase is. It was explained to them that this would put the event in a
stage in which the visitors are allowed to sign up for the event. The user found it helpful
that the event phases were distinguished.

e After putting the event in the visitor sign-up phase, the user asked how to sign up to host

for the event that they created. They were instructed to click the “home” button and

21

navigate to the Host path from there. However, the user suggested for efficiency’s sake
that it might be a better option to have a hosting option on the event organizer path itself.
The user landed on the host all events phase, and was asked to confirm that they were
able to see the event they had just created. This confirmation was positive.

The user proceeded to sign up for the event that they had created. They were asked once
again to submit the form without inputting all fields, and confirm that an alert message
popped up on the screen. This confirmation was positive.

After submitting the host form, the user asked how the visitors would be matched with
the hosts, and how the algorithm would take gender preferences into account. It was
explained to them that the visitors would view the available rooms and choose their
accommodation for the night, like they would with “Airbnb.” The user complimented this
approach and expressed that this was a creative way of tackling the problem.

The user asked why the event they signed up for disappeared on the host “All Events”
page. Upon hearing that their event can be found on the “My Events” page, and no longer
on the “All Events” page, the user suggested that the All Events page should show every
event regardless, but display the host’s specific events slightly differently. For instance,
with an “Already signed up” notification on the Card.

The user was asked to navigate to the My Events page, where they were asked to
complete the last step, which was to edit the number of visitors they were willing to take
and click “Update Info.” Upon clicking this, the user confirmed that the my events

display indeed had the newly updated number of visitors.

22

e The user was finally asked if they had any further recommendations, and if the platform
provided more or less what they would expect from a host-visitor pairing application.

They oftered the following feedback:

o Photo uploads by the hosts so that visitors will be able to recognize them upon
meeting them.
o Some sort of location or map API so that the visitors will be able to find the dorm
in which they were staying in (this would primarily be relevant to the Visitor
Flow, but this was recorded and considered nonetheless).
e The user was thanked for their time, and to let the developers know if they had any
further suggestions.

This assessment was helpful in identifying bugs that would have otherwise been difficult
to catch through one evaluator alone. Moreover, it confirmed that the must have and should have
features of such an application were met, and that the overall “Airbnb” approach will win the
approval of potential clients. The user’s comments also suggested platform is ready to be used to
members of organizations that host overnight events, though the potential modifications that they
offered would make TigerNest even more convenient, and thus more likely to be used down the
road, by the clients.

7. Conclusion

Overall, TigerNest: Event Organizer and Host Flow succeeds in its fundamental goal to
reduce the burden of organization leaders in terms of managing overnight accommodation. The
User Interface is fairly navigable and intuitive, as validated by the evaluation feedback, and there

is a steady and reliable flow of data between all the layers of the application. Additionally, all of

23

the high priority requirements established during the requirements gathering phase were met, and
the system was rigorously tested to ensure that it meets these expectations.
7.1 Takeaways

The project was a learning experience not only because of the new languages and
frameworks used, such as React.js, Express.js, and the AWS servers that were attempted, but also
because of the requirements gathering and evaluation phases, which were integral to the project.
These stages separated 7igerNest: Event Organizer and Host Flow from traditional coding
projects for university classes. This ability to gather requirements through meetings with the
application’s clients is a must-have in the repertoire of a successful software engineer.
Additionally, learning how to incorporate these suggestions to improve the overall user
experience is essential for maintaining high quality software applications. The project also
helped reinforce how models such as MoSCoW are pertinent to the development life cycle.
Another noteworthy takeaway from the project was the utility of User Interface sketches.
Planning out the entire logical path through a particular workflow on the application certainly
expedited the actual development phase.
7.2 Future Developments

One potential “could” have feature of the application that will be looked into is another
attempt at deploying TigerNest on an AWS server, and potential sponsorship as a TigerApp. Two
of the three requirements specified by the TigerApps chair was met: the front end was developed
using React.js, and can thus be more easily maintained by TigerApps members, and the
application idea and approach was approved by the TigerApps chair. All that is left in terms of

conditions is that the application is hosted on an AWS server. Though the initial attempts at

24

deploying to AWS were unsuccessful, at this point it would be possible to devote all the attention
solely to AWS deployment without worrying about pending core features. Fortunately, there is
another AWS platform, namely Elastic Compute Cloud, that is a popular resource for web
developers that may be worth looking into''.

Additionally, the could have features as well as the recommendations from the user
during the evaluation phase, as detailed in Section 6, will be considered in order to enhance the
application. For instance, options such as a “search bar,” and image uploading for the hosts upon
registration, can indeed be helpful for the organizers and hosts. Additionally, keeping in mind
some of the concerns expressed by the user during the evaluation, additional viewers can be
asked to review our application and gather their feedback, and thus determine the individual
priority of each of the new features that will be implemented on the platform. Though the single
user evaluation was useful, it would certainly be helpful to gather more opinions as well from

other clients.
8. Acknowledgements

TigerNest: Event Organizer and Host Flow would not have been possible without my
advisor, Dr. Robert Dondero, who helped me stay on track to completing the application over the
course of the semester, and offered advice regarding the priority of various features, people to be
contacted to overcome roadblocks, and the most logical steps forward. I would also like to thank
my teammate Michelle Yuen, who worked on the visitor flow of the project in TigerNest: Visitor
Flow. Additionally, without Mel Shu, the developer of Princeton Courses, it would have been

nearly impossible to integrate CAS in our system. Finally, the advice from the members of the

" "Amazon EC2 - AWS - Amazon.com." https://aws.amazon.com/ec2/. Accessed 7 May. 2019.

25

https://aws.amazon.com/ec2/

student organizations that agreed to discuss the application throughout the requirements

gathering and evaluation phases was invaluable in developing and assessing the platform:

An Lahn Le, Arjun Sai Krishnan - Princeton Debate Panel
Baran Cimen - Princeton Envision

Bozhidar Stankovickj - Princeton Model United Nations
Stephen Cornwell - TigerLaunch

Casey Chow, David Fan, Gordon Chu - Hack Princeton
Yannis Karikozis - Club Swim

Reilly Bova - TigerApps

26

References

[1] Chow, Casey. “Lessons Learned from HackPrinceton's Host Matching (Part 1).” Medium, HackPrinceton, 5 Dec.
2017, medium.com/hackprinceton/lessons-learned-from-hackprincetons-host-matching-part-1-ad3cflef7e24.

[2] Sedgewick, Robert, and Kevin Daniel Wayne. Algorithms. W. Ross MacDonald School Resource Services
Library, 2017.

[3] Athalye, Anish. “Algorithms in the Real World: Host Matching.” Medium, HackMIT Stories, 25 Sept. 2015,
medium.com/hackmit-stories/algorithms-in-the-real-world-host-matching-62baf4d7c165.

[4] Singh, Shambavi. “Best First Search (Informed Search).” GeeksforGeeks, 31 Jan. 2019,

www.geeksforgeeks.org/best-first-search-informed-search/.

[5] SHARP. INTERACTION DESIGN: beyond Human-Computer Interaction. JOHN WILEY & Sons, 2019.

27

http://www.geeksforgeeks.org/best-first-search-informed-search/

Appendix
(What it does Walkthrough):

WELCOME TO
TIGERNEST!

Matching Princeton students with visiting guests

Event Organizer Host ket Visitor il

Register events that hosts and Host a visiting student! Find a place to stay!
visitors sign up for! .
on up Login

Login with CAS Login with CAS

1) The user navigates to https:/tiger-nest.herokuapp.com, and clicks the “login with CAS”
on the Event Organizer card.

PRINCETON
UNIVERSITY

Central Authentication Service

NetID nshankar ‘ (q

Password | ecccccccce

‘ LOGIN ‘ ‘ CLEAR ‘

Change my Password or Get Help

© 2015-2019 The Trustees of Princeton University

2) The user enters their login credentials with CAS

28

https://tiger-nest.herokuapp.com/

WELCOME TO
TIGERNEST!

Matching Princeton students with visiting guests

Event Organizer Host ket Visitor ¥

Register events that hosts and Host a visiting student! Find a place to stay!
visitors sign up for! N
P Login

Login with CAS Login with CAS

3) The user clicks “Login with CAS” on the event organizer card again

Home MyEvents Logout

Shankar

Niranjan

nshankar@prin«

4) The user is direct to an “Event Organizer Registration Page.” For the first name tab, they will
enter their first name. In the last name tab, they will enter their last name. For the email input, the user
will enter in any personal email address of their choice. For the registration code, the user must input the

following: 25di319230d8208sd.

29

Home MyEvents Logout

My Events

Create a new event

Pending

5) The user is directed to the My Events page. They will click the “Create a new event” button.

Create an Event X

EventName: Hack Princeton ‘

Start 05/17/2019 Start ‘ 06:00 PM ‘
Date Time

End 05/19/2019 End ‘ 10:00 AM ‘
Date Time

Expected 450 Location ‘ 450 ‘
Attendance e

Hosting Organization Hack Princeton ‘

Please add a brief description of the event:

Hackathon for Enthusiastic Coders|

Create Event

6) The user is prompted with a “Create an Event” Modal, where they will input the
following information: Hack Princeton for the event name, 5/17/2019 for the start-date, 6:00 PM

30

for the start time, 5/17/2019 for the end-date, 10:00 AM for the end time, 450 for the expected
attendance, 450 for the location, Hack Princeton as the hosting organization, and “Hackathon for
Enthusiastic Coders” as the description. Then, the user will click “Create Event.”

Home MyEvents Logout

My Events

Create a new event

Pending

Hack Princeton

Edit Event

7) The page will automatically refresh and the user should see the newly created “Hack
Princeton” event under the “Pending” tab.

Edit Hack Princeton x

Event Name: Hack Princeton

Start 05/17/2019 Start 06:00 PM
Date Time
End 05/19/2019 End 10:00 AM
Date Time

Expected 450 Location and Center|
Attendance

Hosting Organization Hack Princeton

Please add a brief description of the event:

Hackathon for Enthusiastic Coders

Update Event

31

8) The user will then be prompted with the “Edit Hack Princeton” Modal. Under the location
field, they will change the value from 450 to “Friend Center,” and then click Update Event.

Home MyEvents Logout

My Events

Create a new event

Hack Princeton

9) The event will be visible again under the “Pending Tab.” Now, the user will click, the Begin
Visitor Signup button.

Begin Visitor Signup for Hack Princeton X

Are you sure you want to begin visitor signup for this event?

Begin Visitor Signup

10) The user will select “Begin Visitor Signup” once on this Modal.

32

Home MyEvents Logout

My Events

Create a new event

Pending

11) The page again will refresh, and the user will no longer see the Hack Princeton Event under
the Pending Tab. The user will then click the “Visitor Signup in Progress” tab.

Home MyEvents Logout

My Events

Create a new event

Visitor Signup in Progress

Hack Princeton

Edit Event

12) The user should now be able to see the Hack Princeton event under the Visitor Signup in
Progress Tab. Next, the user should select the “Home” key on the Navigation Bar at the top of the page.

33

WELCOME TO
TIGERNEST!

Matching Princeton students with visiting guests

Event Organizer Host ket Visitor
Register events that hosts and Host a visiting student! Find a place to stay!

visitors sign up for! q
ign up Login

13) The user will be directed to the home page again, where they should click “Login with CAS
on the host card.

Home AllEvents My Events Logout

Host for an event!

Hack Princeton

| A

2019-05-17 to 2019-05-19
Friend Center

18:00

Sign up to host

14) The user will arrive at the “All Events” tab on the Host path, where they should be able to
view the event that they created as an Event Organizer. They will click “Sign up to host”

34

Host for Hack Princeton x
First Name Joe
Last Name Schmo
Room Number (Ex: Little Hall 99) Little Hall 99
Cellphone Number: 1234567890
Max Number of Visitors: 3
Gender O Male
) Female
Opposite Gender Visitors © Yes
) No

15) The user should be prompted with a “Host for Hack Princeton” modal. For the first
name, the user will input “Joe,” for the last name they will input “Schmo,” “Little Hall 99” for the
Room Number, “1234567890” for the cellphone number, 3 for max number of visitors, Male for
gender, and Yes for opposite gender visitors. The user should then select “Sign Up.”

Home AllEvents My Events Logout

Host for an event!

16) The user should be directed back to the “All events page,” and Hack Princeton should
no longer appear. The user should then select the “My Events” tab on the navigation bar.

35

Home AllEvents MyEvents Logout

Your Events

Event Name: Hack Princeton Maximum Visitors:3 Cellphone: 1234567890 Edit Information Drop Event View Visitors

17) On the My Events page, the user should be able to a Table Row with “Hack
Princeton” along with the other information regarding the hosting on the page. They should then
click the “Edit information” button in the table row.

Edit Information for Hack Princeton x
First Name: Joe
Last Name: Schmo

Room Number:

Little Hall 99
Cellphone Number: 1234567890
Max Number of Visitors: 2|
Gender © Male
) Female
Opposite Gender Visitors O Yes
) No

Update Info

18) The user will be presented with an “Edit Information” Modal, where they should
change the max number of visitors from 3 to 2, and then click update Info.

36

Home AllEvents MyEvents Logout

Your Events

Event Name: Hack Princeton Maximum Visitors:2 Cellphone: 1234567890 Edit Information Drop Event View Visitors

19) The user should be able to now see the updated information, with 2 maximum visitors, on the
My Events page.

20) At this point in the process, the user will refer to the TigerNest: Visitor Flow document by
Michelle Yuen, and should progress through all the stages outlined. When the user has completed this,
they should return back to the Host my events page from step 19 in this tutorial, and select “View
Visitors.”

View Your Visitor List! X

John Smith

21) The user will now see “John Smith” under their visitor list.

37

Code:

Database.py

from flask import Flask, request, jsonify

from flask_sqlalchemy import SQLAIchemy

from flask_marshmallow import Marshmallow

from flask_cors import CORS

from flask_bcrypt import Berypt

from flask_jwt_extended import (
JWTManager, jwt_required, create_access_token,
get_jwt_identity

)

import os

import hashlib

import json

from sendgrid import SendGridAPIClient

from sendgrid.helpers.mail import Mail

import time

import jwt

from flask_heroku import Heroku
basedir = os.path.abspath(os.path.dirname(__file_))
app = Flask(__name__)

Setup the Flask-JWT-Extended extension

app.config['JWT_SECRET_KEY'] = 'super-secret' # Change this!
app.config['JWT_ACCESS_TOKEN_EXPIRES' =60 * 60 * 24 # expire after 1 day
jwt_flask = JWTManager(app)

berypt = Berypt(app)

CORS(app)
#postgres://vhhabiabmrdtya:d2d626af16f4894a2a656de2ca8158f4414687b9b84ea08f801c2c07d774c6b8@ec2-54-243-2
41-62.compute-1.amazonaws.com:5432/d9d1mlhOcjs2If

#app.config[' SQLALCHEMY_DATABASE_URI'] =
"postgres://vhhabiabmrdtya:d2d626af16f4894a2a656de2ca8158f4414687b9b84ea08f801c2c07d774c6b8@ec2-54-243-2
41-62.compute-1.amazonaws.com:5432/d9d1mlhOcjs2If"

#app.config SQLALCHEMY_DATABASE_URI'] = "postgresql://localhost/tigernest"
app.config['SQLALCHEMY_DATABASE_URI'] = os.environDATABASE_URL"]
#app.config['SQLALCHEMY_DATABASE_URI'] = os.environ[DATABASE_URL']

heroku = Heroku(app)
db = SQLAIchemy(app)
ma = Marshmallow(app)

@app.route("/getRegCode", methods = ["GET"])

def get_code():
result = {"regCode": "2sdi319230d8208sd"}
return jsonify(result)

38

class EventOrganizer(db.Model):
event_organizer_id = db.Column(db.Integer, primary_key = True)
netid = db.Column(db.Unicode, unique = True)
firstname = db.Column(db.Unicode, unique = False)
lastname = db.Column(db.Unicode, unique = False)
email = db.Column(db.Unicode, unique = False)
password = db.Column(db.Unicode, unique = False)
campus_organizations = db.Column(db.JSON, unique = False)

def __init__(self, netid, firsthame, lastname, email, password, campus_organizations):
self.netid = netid
self .firsthame = firstname
self.lastname = lastname
self.email = email
self.password = password
self.campus_organizations = campus_organizations

class EventOrganizerSchema(ma.Schema):
class Meta:
fields = ('event_organizer_id', 'netid', 'firstname’, 'lastname’, 'email’, 'password'’,
'‘campus_organizations')

event_organizer_schema = EventOrganizerSchema()
event_organizers_schema = EventOrganizerSchema(many = True)

Endpoint to add new event organizer
@app.route("/event_organizer", methods=["POST"])
def event_organizer_add():
netid = request.json['netid']
firsthname = request.json['firstname’]
lastname = request.json['lastname']
email = request.json['email']
password = request.json['password']
campus_organizations = request.json['campus_organizations']

new_event_organizer = EventOrganizer(netid, firstname, lastname, email, password, campus_organizations)
db.session.add(new_event_organizer)

db.session.commit()

return event_organizer_schema.jsonify(new_event_organizer)

Endpoint to retrieve existing event organizer from the database
@app.route("/event_organizer/<event_organizer_id>", methods=["GET"])
def event_organizer_get(event_organizer_id):
event_organizer = EventOrganizer.query.get(event_organizer_id)
return event_organizer_schema.jsonify(event_organizer)

@app.route("/event_organizer/email/<email>", methods=["GET"])

def event_organizer_get_email(email):
event_organizer = EventOrganizer.query filter_by(email=email).first()
return event_organizer_schema.jsonify(event_organizer)

@app.route("/event_organizer/netidVerify/<netid>", methods=["GET"])

def event_organizer_verify_netid(netid):
event_organizer = EventOrganizer.query.filter_by(netid=netid).first()
#return event_organizer_schema.jsonify(event_organizer)
#return event_organizer_schema.jsonify(event_organizer)

39

return event_organizer_schema.jsonify(event_organizer)

@app.route("/event_organizer/getCount", methods=["GET"])
def event_organizer_get_count():
count = session.query(EventOrganizer.netid).count()

return count
+H

#*

class Event(db.Model):
event_id = db.Column(db.Integer, primary_key = True)
name = db.Column(db.Unicode, unique = False)
start_date = db.Column(db.Unicode, unique = False)
start_time = db.Column(db.Unicode, unique = False)
end_date = db.Column(db.Unicode, unique = False)
end_time = db.Column(db.Unicode, unique = False)
description = db.Column(db.Unicode, unique = False)
location = db.Column(db.Unicode, unique = False)

expected_number_visitors = db.Column(db.Integer, unique = False)
number_of_hosts = db.Column(db.Integer, unique = False)

hosts = db.Column(db.JSON, unique = False)

hosting_organization = db.Column(db.Unicode, unique=False)

organizer_id = db.Column(db.Unicode, unique=False)

organizer_netid = db.Column(db.Unicode, unique=False)

event_stage = db.Column(db.Integer, unique=False)

def __init__(self, name, start_date, end_date, location, expected_number_visitors, number_of_hosts, hosts,
start_time, end_time, description, hosting_organization, organizer_netid, organizer_id, event_stage):

self.name = name
self.start_date = start_date
self.end_date = end_date
self.location = location

self.expected_number_visitors = expected_number_visitors

self.number_of _hosts = number_of hosts
self.hosts = hosts

self.start_time = start_time

self.end_time = end_time

self.description = description

self.hosting_organization = hosting_organization

self.organizer_id = organizer_id
self.organizer_netid = organizer_netid
self.event_stage = event_stage

class EventSchema(ma.Schema):
class Meta:

fields = ('event_id', 'name’, 'start_date', 'end_date', 'location’, 'expected_number_visitors',
'number_of_hosts', 'hosts', 'start_time', 'end_time', 'description’, 'hosting_organization', 'organizer_netid', 'organizer_id',

'event_stage')

event_schema = EventSchema()
events_schema = EventSchema(many = True)

@app.route("/event", methods=["POST"])

def event_add():
name = request.json['name’]
start_date = request.json['start_date']
end_date = request.json['end_date']
location = request.json['location']

40

expected_number_visitors = request.json['expected_number_visitors']
number_of_hosts = request.json['number_of_hosts']

hosts = request.json['hosts']

start_time = request.json['start_time']

end_time = request.json['end_time'"

description = request.json['description]

hosting_organization = request.json['hosting_organization']
organizer_netid = request.json['organizer_netid']

organizer_id = request.json['organizer_id'"]

event_stage =0

new_event = Event(name, start_date, end_date, location, expected_number_visitors, number_of_hosts, hosts,

start_time, end_time, description, hosting_organization, organizer_netid, organizer_id, event_stage)
db.session.add(new_event)
db.session.commit()
return event_schema.jsonify(new_event)

@app.route("/event/update/<event_id>", methods=["POST"])
def event_update_info(event_id):

event = Event.query.get(event_id)

event.name = request.json['name']

event.start_date = request.json['start_date']

event.end_date = request.json['end_date']

event.location = request.json['location’]
event.expected_number_visitors = request.json['expected_number_visitors']
event.number_of_hosts = request.json['number_of hosts']
event.hosts = request.json['hosts']

event.start_time = request.json['start_time']

event.end_time = request.json['end_time']

event.description = request.json['description’]
event.hosting_organization = request.json['hosting_organization']
#event.organizer_id = request.json['organizer_id"]

db.session.commit()
return event_schema.jsonify(event)

@app.route("/event/stage/visitor_signup/<event_id>", methods=["POST"])
def event_update_stage_visitor_signup(event_id):

event = Event.query.get(event_id)

event.event_stage = 1;

db.session.commit()
return event_schema.jsonify(event)

@app.route("/event/stage/close_signup/<event_id>", methods=["POST"])
def event_update_stage_close_signup(event_id):

event = Event.query.get(event_id)

event.event_stage = 2;

db.session.commit()
return event_schema.jsonify(event)

@app.route("/event/<event_id>", methods=["GET"])
def event_get(event_id):
event = Event.query.get(event_id)

41

return event_schema.jsonify(event)

@app.route("/event/addHost/<event_id>", methods=["POST"])
def event_add_host(event_id):
event = Event.query.get(event_id)
event.number_of_hosts = event.number_of hosts + 1
db.session.commit()
return event_schema.jsonify(event)

@app.route("/event/sort_date", methods=["GET"])

def event_sort_date():
events = Event.query
result = events.order_by(Event.start_date).all()
return events_schema.jsonify(result)

@app.route("/event/most_recently_added", methods=["GET"])
def event_most_recent():
events = Event.query
result = events.order_by(Event.event_id.desc()).first()
return events_schema.jsonify(result)

@app.route("/event/organizersEvents/<organizer_id>", methods=["GET"])
def event_get_organizers_events(organizer_id):

result = Event.query.filter_by(organizer_id=organizer_id)

return events_schema.jsonify(result)

@app.route("/event/organizersEvents/netid/<organizer_netid>", methods=["GET"])

def event_get_organizers_events_netid(organizer_netid):
result = Event.query.filter_by(organizer_netid=organizer_netid).order_by(Event.start_date).all()
return events_schema.jsonify(result)

@app.route("/event/delete/<event_id>", methods=["DELETE"])
def event_delete(event_id):
event = Event.query.get(event_id)
db.session.delete(event)
db.session.commit()
return event_schema.jsonify(event)

H.

#*

class Host(db.Model):
host_id = db.Column(db.Integer, primary_key = True)
netid = db.Column(db.Unicode, unique = True)
name = db.Column(db.Unicode, unique = False)
email = db.Column(db.Unicode, unique = False)
campus_organizations = db.Column(db.Unicode, unique = False)
hosting_address = db.Column(db.Unicode, unique = False)
max_visitors = db.Column(db.Integer, unique = False)
gender = db.Column(db.Unicode, unique = False)
same_gender = db.Column(db.Boolean, unique = False)
expandable = db.Column(db.Boolean, unique = False)
additional_visitors = db.Column(db.Integer, unique = False)

def __init__(self, netid, name, email, campus_organizations, hosting_address, max_yvisitors, gender,
same_gender, expandable, additional_visitors):
self.netid = netid
self.name = name

self.email = email

self.campus_organizations = campus_organizations
self.hosting_address = hosting_address
self.max_visitors = max_visitors

self.gender = gender

self.same_gender = same_gender

self.expandable = expandable
self.additional_visitors = additional_visitors

class HostSchema(ma.Schema):
class Meta:
fields = ("host_id', 'netid’, 'name’, 'email’, 'campus_organizations', 'hosting_address', 'max_visitors',
'gender’, 'same_gender', 'expandable’, 'additional_visitors')

host_schema = HostSchema()
hosts_schema = HostSchema(many = True)

@app.route("/host", methods=["POST"])

def host_add():
netid = request.json['netid']
name = request.json['name’]
email = request.json['email']
campus_organizations = request.json['campus_organizations']
hosting_address = request.json['hosting_address']
max_visitors = request.json['max_visitors']
gender = request.json['gender’]
same_gender = request.json['same_gender']
expandable = request.json['expandable’]
additional_visitors = request.json['additional_visitors']

new_host = Host(netid, name, email, campus_organizations, hosting_address, max_visitors, gender,
same_gender, expandable, additional_visitors)

db.session.add(new_host)
db.session.commit()
return host_schema.jsonify(new_host)

@app.route("/host/<host_id>", methods=["GET"])
def host_get(host_id):

host = Host.query.get(host_id)

return host_schema.jsonify(host)

#.

T+

""class VisitorPairing(db.Model):
visitorpairing_id = db.Column(db.Integer, primary_key=True)
visitor_id = db.Column(db.Integer, unique=False)
event_id = db.Column(db.Integer, unique=False)
host_id = db.Column(db.Integer, unique=False)

class VisitorPairingSchema(db.Model):
class Meta:
fields = ('visitorpairing_id', 'visitor_id', 'event_id', 'host_id'")

visitorpairing_schema = VisitorPairingSchema()
visitorpairings_schema = VisitorPairingSchema(many = True)""
#.

#*

class Pairing(db.Model):

43

pairing_id = db.Column(db.Integer, primary_key=True)
event_id = db.Column(db.Integer, unique=False)
host_gender = db.Column(db.Unicode, unique=False)
same_gender_room = db.Column(db.Boolean, unique=False)
host_room_num = db.Column(db.Unicode, unique=False)
max_visitors = db.Column(db.Integer, unique=False)
num_visitors = db.Column(db.Integer, unique =False)
host_first_name = db.Column(db.Unicode, unique=False)
host_last_name = db.Column(db.Unicode, unique=False)
host_cellphone = db.Column(db.Unicode, unique=False)
host_netid = db.Column(db.Unicode, unique=False)
event_name = db.Column(db.Unicode, unique=False)

def __init_ (self, event_id, host_gender, same_gender_room, host_room_num, max_yvisitors, num_visitors,

host_first_name, host_last_name, host_cellphone, host_netid, event_name):
self.event_id = event_id
self.host_gender = host_gender
self.same_gender_room = same_gender_room
self.host_room_num = host_room_num
self.max_visitors = max_visitors
self.num_visitors = num_visitors
self.host_first_ name = host_first_name
self.host_last_name = host_last_name
self.host_cellphone = host_cellphone
self.host_netid = host_netid
self.event_name = event_name

class PairingSchema(ma.Schema):
class Meta:

fields = ('pairing_id', 'event_id', 'host_gender’, 'same_gender_room', 'host_room_num', 'max_visitors',

'num_visitors', 'host_first_name', 'host_last_name’, 'host_cellphone’, 'host_netid', 'event_name')

pairing_schema = PairingSchema()
pairings_schema = PairingSchema(many = True)

@app.route("/pairing", methods=["POST"])

def pairing_add():
event_id = request.json['event_id']
host_gender = request.json['host_gender']
same_gender_room = request.json['same_gender_room']
host_room_num = request.json['host_room_num']
max_visitors = int(request.json['max_visitors'])
num_visitors = 0
host_first_name = request.json['host_first_name']
host_last_name = request.json['host_last_name']
host_cellphone = request.json['host_cellphone']
host_netid = request.json['host_netid"]
event_name = request.json['event_name']

new_pairing = Pairing(event_id, host_gender, same_gender_room, host_room_num, max_visitors,
num_visitors, host_first_name, host_last_name, host_cellphone, host_netid, event_name)

db.session.add(new_pairing)
db.session.commit()
return pairing_schema.jsonify(new_pairing)

44

@app.route("/pairing/<pairing_id>", methods=["GET"])
def pairing_get(pairing_id):
pairing = Pairing.query.get(pairing_id)
return pairing_schema.jsonify(pairing)

@app.route("/pairing/events_for_host/<host_netid>", methods=["GET"])
def pairing_get_event_for_host(host_netid):
pairings = Pairing.query.filter_by(host_netid=host_netid).all()
return pairings_schema.jsonify(pairings)

@app.route("/pairing/hosts_for_event/<event_id>", methods=["GET"])
@jwt_required
def pairing_get_host_for_event(event_id):
pairings = Pairing.query.filter_by(event_id=event_id).all()
return pairings_schema.jsonify(pairings)

@app.route("/pairing/addVisitor/<pairing_id>", methods=["POST"])
@jwt_required
def pairing_add_ visitor(pairing_id):
pairing = Pairing.query.get(pairing_id)
pairing.num_visitors = pairing.num_visitors + 1
db.session.commit()
return pairing_schema.jsonify(pairing)

@app.route("/pairing/removeVisitor/<pairing_id>", methods=["POST"])
@jwt_required
def pairing_remove_visitor(pairing_id):
pairing = Pairing.query.get(pairing_id)
pairing.num_visitors = pairing.num_visitors - 1
db.session.commit()
return pairing_schema.jsonify(pairing)

@app.route("/pairing/delete/<pairing_id>", methods=["DELETE"])
def pairing_delete(pairing_id):
pairing = Pairing.query.get(pairing_id)
db.session.delete(pairing)
db.session.commit()
return pairing_schema.jsonify(pairing)

@app.route("/pairing/update/<pairing_id>", methods=["POST"])
def pairing_update(pairing_id):
pairing = Pairing.query.get(pairing_id)
pairing.host_gender = request.json['host_gender']

pairing.same_gender_room = request.json['same_gender_room']

pairing.host_room_num = request.json['host_room_num']
pairing.max_visitors = request.json['max_visitors']
pairing.host_first_name = request.json['host_first_name']
pairing.host_last_name = request.json['host_last_name']
pairing.host_cellphone = request.json['host_cellphone']

db.session.commit()
return pairing_schema.jsonify(pairing)

H.

#*

class VisitorPairing(db.Model):

45

visitor_pairing_id = db.Column(db.Integer, primary_key = True)
visitor_id = db.Column(db.Integer, unique=False)

visitor_email = db.Column(db.Unicode, unique=False)
event_id = db.Column(db.Integer, unique=False)

pairing_id = db.Column(db.Integer, unique=False)

def __init__(self, visitor_id, visitor_email, event_id, pairing_id):
self.visitor_id = visitor_id
self.visitor_email = visitor_email
self.event_id = event_id
self.pairing_id = pairing_id

class VisitorPairingSchema(ma.Schema):
class Meta:
fields=("visitor_pairing_id', 'visitor_id', 'visitor_email', 'event_id', 'pairing_id")

visitor_pairing_schema = VisitorPairingSchema()
visitor_pairings_schema = VisitorPairingSchema(many = True)

@app.route("/visitor_pairing", methods=["POST"])
@jwt_required
def visitor_pairing_add():
visitor_id = request.json['visitor_id']
visitor_email = request.json['visitor_email']
event_id = request.json['event_id']
pairing_id = int(request.json['pairing_id'])
new_visitor_pairing = VisitorPairing(visitor_id, visitor_email, event_id, pairing_id)
db.session.add(new_visitor_pairing)
db.session.commit()
return visitor_pairing_schema.jsonify(new_visitor_pairing)

@app.route("/visitor_pairing/delete/<visitor_pairing_id>", methods=["DELETE"])
def visitor_pairing_delete(visitor_pairing_id):
visitor_pairing = VisitorPairing.query.get(visitor_pairing_id)
db.session.delete(visitor_pairing)
db.session.commit()
return visitor_pairing_schema.jsonify(visitor_pairing)

@app.route("/visitor_pairing/guests_in_room/<pairing_id>", methods=["GET"])
@jwt_required
def visitor_pairing_get_guests_in_room(pairing_id):
count = VisitorPairing.query.filter_by(pairing_id=pairing_id).count()
return str(count)

@app.route("/visitor_pairing/pairings_for_event/<event_id>", methods=["GET"])
def visitor_pairing_get_for_events(event_id):
visitor_pairings = VisitorPairing.query.filter_by(event_id=event_id).all()
return visitor_pairings_schema.jsonify(visitor_pairings)

@app.route("/visitor_pairing/all_hosts/<pairing_id>", methods=["GET"])

def visitor_pairing_get_hosts(pairing_id):
visitor_pairings = VisitorPairing.query.filter_by(pairing_id=pairing_id).all()
return visitor_pairings_schema.jsonify(visitor_pairings)

@app.route("/visitor_pairing/filter_eligibilities/<event_id>/<visitor_id>", methods=["GET"])

46

def visitor_pairing_filter_eligibilities(event_id, visitor_id):
visitor_pairing = VisitorPairing.query.filter_by(event_id=event_id, visitor_id=visitor_id).first()
return visitor_pairing_schema.jsonify(visitor_pairing)

#

class Eligibilities(db.Model):
eligibility_id = db.Column(db.Integer, primary_key = True)
visitor_email = db.Column(db.Unicode, unique=False)
event_id = db.Column(db.Unicode, unique=False)
event_name = db.Column(db.Unicode, unique=False)
signed_up = db.Column(db.Boolean, unique=False)

def __init__(self, visitor_email, event_id, event_name, signed_up):
self.visitor_email = visitor_email
self.event_id = event_id
self.event_name = event_name
self.signed_up = signed_up

class EligibilitySchema(ma.Schema):
class Meta:
fields=("eligibility_id", 'visitor_email', 'event_id', 'event_name’', 'signed_up')

eligibility_schema = EligibilitySchema()
eligibilities_schema = EligibilitySchema(many = True)

@app.route("/eligibility", methods=["POST"])
def eligibility_add():
visitor_email = request.json['visitor_email']
event_id = request.json['event_id']
event_name = request.json['event_name']
signed_up = False
new_eligibility = Eligibilities(visitor_email, event_id, event_name, signed_up)
db.session.add(new_eligibility)
db.session.commit()
return eligibility_schema.jsonify(new_eligibility)

@app.route("/eligibility/<eligibility_id>", methods=["GET"])
def eligibility_get(eligibility_id):
eligibility = Eligibilities.query.get(eligibility_id)
return eligibility_schema.jsonify(eligibility)

@app.route("/eligibility/visitor_signup/<eligibility_id>", methods=["POST"])
def eligibility_visitor_signup(eligibility_id):
eligibility = Eligibilities.query.get(eligibility_id)
eligibility.signed_up = True
db.session.commit()
return eligibility_schema.jsonify(eligibility)

@app.route("/eligibility/visitor_signup_not/<eligibility_id>", methods=["POST"])
def eligibility_visitor_not_signup(eligibility_id):

eligibility = Eligibilities.query.get(eligibility_id)

eligibility.signed_up = False

db.session.commit()

return eligibility_schema.jsonify(eligibility)

47

@app.route("/eligibility/events_for_visitor/<visitor_email>", methods=["GET"])
def eligibility_events_for_visitor(visitor_email):
eligibilities = Eligibilities.query.filter_by(visitor_email=visitor_email).all()
return eligibilities_schema.jsonify(eligibilities)

H.

#*

class Visitor(db.Model):
id = db.Column(db.Integer, primary_key = True)
gender = db.Column(db.Unicode, unique = False)
name = db.Column(db.Unicode, unique = False)
same_gender = db.Column(db.Boolean, unique = False)
university = db.Column(db.Unicode, unique = False)
email = db.Column(db.Unicode, unique = True)
password = db.Column(db.Unicode, unique = False)

def __init__(self, gender, name, same_gender, university, email, password):
self.gender = gender
self.name = name
self.same_gender = same_gender
self.university = university
self.email = email
self.password = bcrypt.generate_password_hash(password, 10).decode('utf8')

class VisitorSchema(ma.Schema):
class Meta:

fields = ('id', 'gender’, 'name’, 'same_gender', 'university', 'email’, 'password’)

visitor_schema = VisitorSchema()
visitors_schema = VisitorSchema(many = True)

def authenticate(username, password):

visitor = Visitor.query.filter_by(email=username).first()
if visitor and bcrypt.check_password_hash(visitor.password, password):
return visitor

def identity(payload):
id = payload['identity"]
return Visitor.query.filter_by(id=id).first()

@app.route("/visitor", methods=["POST"])
def visitor_add():
gender = request.json['gender’]
name = request.json['name’]
gender_same = request.json['same_gender']

same_gender = False

if (gender_same == "True"):
same_gender = True

university = request.json['university']

email = request.json['email']

password = request.json['password']

new_visitor = Visitor(gender, name, same_gender, university, email, password)
db.session.add(new_visitor)
db.session.commit()

48

identity = {
"id": new_visitor.id,
"email": new_visitor.email
}
access_token = create_access_token(identity=identity)
return jsonify(access_token=access_token), 200

@app.route("/visitor/login", methods=["POST"])
def visitor_login():
email = request.json['email']
password = request.json['password']
visitor = Visitor.query.filter_by(email=email).first()

if visitor and bcrypt.check_password_hash(visitor.password, password):
identity = {
"id": visitor.id,
"email": visitor.email
}
access_token = create_access_token(identity=identity)
return jsonify(access_token=access_token), 200

return jsonify({"msg": "Bad username or password"}), 401

@app.route("/visitor/reset", methods=["POST"])
def visitor_reset():
email = request.json['email']
visitor = Visitor.query.filter_by(email=email).first()

if visitor:
Expire token in 60 minutes
reset_token = jwt.encode({"id": visitor.id, "exp": int(time.time()) + 60*60},
app.config['JWT_SECRET_KEY'], algorithm="HS256')

message = Mail(
from_email="from_email@example.com’,
to_emails=email,
subject="Password Reset',

html_content="https://tiger-nest.herokuapp.com/visitor/reset?resetToken="+reset_token.decode("utf-8"))
try:
sg = SendGridAPIClient(os.environ.get('SENDGRID_API_KEY"))
response = sg.send(message)
print(response.status_code)
print(response.body)
print(response.headers)
return jsonify(), 200
except Exception as e:
print(e.message)
return jsonify(), 500

return jsonify({"msg": "Invalid user"}), 401
@app.route("/visitor/change-password", methods=["POST"])

def visitor_change_password():
password = request.json['password']

reset_token = jwt.decode(request.json['resetToken'], app.config['JWT_SECRET_KEY"], algorithms=['HS256"])

49

visitor = Visitor.query.get(reset_token["id"])
print(visitor)

if visitor:
visitor.password = bcrypt.generate_password_hash(password, 10).decode('utf8')
db.session.commit()
return jsonify({"msg": "Updated"}), 200

return jsonify({"msg": "Invalid user"}), 401

@app.route("/visitor/<visitor_id>", methods=["GET"])
def visitor_get(visitor_id):

visitor = Visitor.query.get(visitor_id)

return visitor_schema.jsonify(visitor)

@app.route('/visitor/data')

@jwt_required

def protected():
visitor_id = get_jwt_identity()['id"]
visitor = Visitor.query.get(visitor_id)
return visitor_schema.jsonify(visitor)

db.create_all()

#
if _name__ =='_main__"
app.run(debug=True, host="0.0.0.0", port=0s.environ.get("PORT", 5000))
Server.js

const express = require(‘express');
const next = require('next');
let session = require('cookie-session')

const dev = process.env.NODE_ENV !=="production’;
const app = next({ dev });

const handle = app.getRequestHandler();

var CentralAuthenticationService = require('cas');

app.prepare()
.then(() => {
const server = express();
var casURL = 'https://fed.princeton.edu/cas/'
var cas = new CentralAuthenticationService({
base_url: casURL,
service: "http://tiger-nest2.herokuapp.com” + "/verify"
D
server.use(session({
secret: 'abcdefghijkimnop’,
maxAge: 24 * 60 * 60 * 1000 * 365,
cookie: { secure: false }

)]

server.set('json spaces', 2);

server.get(/login’, function (req, res) {
/I Save the user's redirection destination to a cookie
if (typeof (req.query.redirect) === "string’) {

50

reqg.session.redirect = req.query.redirect

/I Redirect the user to the CAS server
res.redirect(casURL + 'login?service=" + "http://tiger-nest2.herokuapp.com/verify")

)

server.get(/logout', function (req, res) {
reg.session = null
res.cookie('netid', null)
res.redirect(casURL + 'logout?url=http://tiger-nest.herokuapp.com’)
D
server.get('/verify', function(req, res) {
/I Check if the user has a redirection destination
let redirectDestination = req.session.redirect || /'
/I If the user already has a valid CAS session then send them to their destination
if (req.session.cas) {
res.redirect(redirectDestination)
return

}

var ticket = req.query.ticket

/I If the user does not have a ticket then send them to the homepage
if (typeof (ticket) === 'undefined') {

res.redirect('/")

return

/I Check if the user's ticket is valid
cas.validate(ticket, function (err, status, netid) {
if (err) {
console.log(err)
res.sendStatus(500)
return
}
reg.session.cas = {
status: status,
netid: netid
h
res.cookie('netid’, netid)
/Ireq.session.cookie.netid = netid;
res.redirect(redirectDestination);
hy;
server.get('/eventOrganizerRegister’, function(req, res){
return handle(req, res);
»
server.get('/test’, function (req, res) {
res.send({yo: req.session.cas.netid});

»;

server.get(‘/netid’, function (req, res) {
/I Save the user's redirection destination to a cookie
if (req.session.cas) {
res.send({netid: req.session.cas.netid});
/lconsole.log("yeeeeeeeeeeeet");
}
else res.redirect("/login?redirect=/")
D
server.get('/', function (req, res) {
res.redirect("https://tiger-nest.herokuapp.com")

)

server.get(*/bootstrap.css’,
function (req, res) {
return handle(req, res);
}

)

server.get('/static/background.jpg’,

51

function (req, res) {
return handle(req, res);
}

)

server.get(™', function (req, res) {
if (req.session.cas){
return handle(req, res);
}

res.redirect("/login?redirect=/")

b

server.set('views', '/views');
server.set('view engine', 'js');
server.engine(’js', require(‘express-react-views').createEngine());

server.listen(process.env.PORT || 3000, (err) => {
if (err) {
throw err;

/lconsole.log("> Ready on http://localhost:3000');
M

)

.catch((ex) => {
console.error(ex.stack);
process.exit(1);

;

My Events.js

import "./bootstrap.css';
import React from 'react'

import Link from 'next/link'

import Head from '../components/head'

import NavBar from '../components/nav'

import fetch from 'isomorphic-unfetch'’

import { Button, Modal, ModalHeader, ModalBody, ModalFooter, Row, Col, Input, Form, FormText, CustomInput } from
'reactstrap’;

import { Nav, Navltem, NavLink, TabContent, TabPane, Card, Cardimg, CardText, CardHeader, CardBody, CardTitle,
CardSubtitle, CardDeck} from 'reactstrap’;

import ReactFileReader from 'react-file-reader’;

import EventOrganizerRegister from './eventOrganizerRegister'

import Router from 'next/router’
import Cookies from ‘js-cookie';

/lconst database_url = "http://localhost:5000"
/lconst server_url = "http://localhost:3000"

const server_url = "https://tiger-nest2.herokuapp.com"

const database_url = "https://tigernest-backend.herokuapp.com
const axios = require(‘axios')
var divStyle = {

color: 'white'

/lcolor: 'dodgerblue’

%

var divStyle2 = {

color: 'black'
/lcolor: 'dodgerblue’

%

var divStyle3 = {
/lcolor: 'black'
color: 'dodgerblue’

I

var divStyle4 = {
/lcolor: 'black’
color: 'seagreen’

%

class eventList extends React.Component {
constructor(props, context){

super(props, context);

this.state = {
modal: false,
editModal: false,
deleteModal: false,
visitorEmails: [],
event_org_id: -1,
user_verified: false,
visitorSignupModal: false,
finalizePairingsModal: false,
activeTab: '1',
viewDetailsModal: false,
pairings_for_event:[],
current_event: {

name:™,

start_time:"",

end_time:"",
description:"",
hosting_organization:"",
expected_number_visitors:"",
event_id:""
}
b
this.addOrganizer = this.addOrganizer.bind(this);
this.toggle = this.toggle.bind(this);
this.addEvent = this.addEvent.bind(this);
this.editEvent = this.editEvent.bind(this);
this.deleteEvent = this.deleteEvent.bind(this);
this.handleFiles = this.handleFiles.bind(this);
this.editModalToggle = this.editModalToggle.bind(this);
this.deleteModalToggle = this.deleteModalToggle.bind(this);
this.toggleTab = this.toggleTab.bind(this);
this.beginVisitorSignup = this.beginVisitorSignup.bind(this);
this.visitorSignupToggle = this.visitorSignupToggle.bind(this);
this.finalizePairings = this.finalizePairings.bind(this);
this.finalizePairingsToggle = this.finalizePairingsToggle.bind(this);
this.viewDetailsToggle = this.viewDetailsToggle.bind(this);
this.refreshPage = this.refreshPage.bind(this);
[Ithis.verifyUser = this.verifyUser.bind(this);

}
toggleTab(tab){
if (this.state.activeTab !== tab) {
this.setState({
activeTab: tab
o}
}

refreshPage(){
window.location.reload();

53

}
async beginVisitorSignup(){
const res = await fetch(database_url + '/fevent/stage/visitor_signup/' + this.state.current_event.event_id, {
method: "POST",
headers: {
'Accept'’: 'application/json’,
"Content-Type": "application/json"
}
N
this.visitorSignupToggle();
this.refreshPage();

}
async finalizePairings(){
const res = await fetch(database_url + '/event/stage/close_signup/' + this.state.current_event.event_id, {
method: "POST",
headers: {
'Accept'’: 'application/json’,
"Content-Type": "application/json"
}
m
this.finalizePairingsToggle();
this.refreshPage();

}

async viewDetailsToggle(){
if (this.state.viewDetailsModal)

{

let val = event.target.value;

const res = await fetch(database_url + Jevent/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin™: "*"
)]
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));
const res2 = await fetch(database_url + "/visitor_pairing/pairings_for_event/" + val, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"

)

data = await res2.json()
let pairingList =[]

for (leti = 0; i < data.length; i++)

let visitor_id = datali]['visitor_id']
let pairing_id = data([i]['pairing_id']

let resVisitor = await fetch(database_url + '/visitor/' + visitor_id, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var dataVisitor = await resVisitor.json()
dataVisitor = JSON.stringify(dataVisitor)

dataVisitor = JSSON.parse(dataVisitor)

let resHost = await fetch(database_url + '/pairing/' + pairing_id, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var dataHost = await resHost.json()
dataHost = JSON.stringify(dataHost)
dataHost = JSON.parse(dataHost)
let pairing_info = String("Host: " + dataHost['host_first_name] + " "
dataVisitor['name’] + "\n")
pairingList.push(pairing_info)
}

/ldata = JSON.stringify(data);
/Idata = JSON.parse(data);
this.setState(state => ({ pairings_for_event: pairingList}));

}

this.setState(prevState => ({
viewDetailsModal: !prevState.viewDetailsModal

Ny

async addOrganizer(){
/Iconsole.log(document.forms["registerForm"]["netid"].value);

let emaillnput = document.forms["registerForm"]["email"].value;

let passwordInput1 = document.forms["registerForm"]["password1"].value;
let passwordInput2 = document.forms["registerForm"]["password2"].value;
let firstnamelnput = document.forms["registerForm"]["firstname"].value;

let lastnamelnput = document.forms["registerForm"]["lastname"].value;

let registrationCode = document.forms["registerForm"]["regcode"].value;
let netid = Cookies.get('netid');

1
const res = await fetch(database_url + "/getRegCode", {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"

)

var data = await res.json();
data = JSON .stringify(data);

data = JSON.parse(data);
let trueRegCode = data['regCode'];

/*if (passwordInput1 == passwordInput2)

this.setState(state => ({ mismatchPassword: true}));
i
if (registrationCode !== trueRegCode)
{
this.setState(state => ({ wrongRegCode: true}));
}
else
{
let organizer_info = {
"firstname"; firstnamelnput,
"lastname": lastnamelnput,
"password": passwordInput1,

+ dataHost['host_last_name'] + ", Visitor:

55

"campus_organizations": ",
"netid": netid,
"email": emaillnput,
h
const res = await fetch(database_url + '/fevent_organizer, {
method: "POST",
headers: {
'Accept’: "application/json’,
"Content-Type": "application/json"
h
body: JSON.stringify(organizer_info)
;
Router.push("/eventOrganizerLogin");
}
this.refreshPage();

async deleteEvent(){
const res = await fetch(database_url + '/event/delete/' + this.state.current_event.event_id, {
method: "DELETE",
headers: {
'Accept’: "application/json’,
"Content-Type": "application/json"
}
M
this.deleteModalToggle();
this.refreshPage();

}
async editEvent(){

/lconsole.log(this.state.visitorEmails)

/lconsole.log(document.cookie)

if (document.forms["eventEditForm"]["eventname"].value === "" || document.forms["eventEditForm"]["starttime"].value
|| document.forms["eventEditForm"]["startdate"].value === "" || document.forms["eventEditForm"]["endtime"].value
|| document.forms["eventEditForm"]["enddate"].value === "" ||
"" || document.forms["eventEditForm"]["location"].value === "" ||
"" || document.forms["eventEditForm"]["hostingorg"].value

document.forms["eventEditForm"]["description"].value ===
document.forms["eventEditForm"]["expectednum"].value ===
=== "")
{
alert("All fields are required!");
return;

if (isNaN(parselnt(document.forms["eventEditForm"]["expectednum"].value)))

alert("Expected number of visitors must be an integer!");
return;

}

let eventinfo = {
"name": document.forms["eventEditForm"]["eventname"].value,
"start_time": document.forms["eventEditForm"]["starttime"].value,
"start_date": document.forms["eventEditForm"]["startdate"].value,
"end_time": document.forms["eventEditForm"]["endtime"].value,
"end_date": document.forms["eventEditForm"]["enddate"].value,
"description": document.forms["eventEditForm"]["description"].value,
"location": document.forms["eventEditForm"]["location"].value,
"expected_number_visitors": parselnt(document.forms["eventEditForm"]["expectednum”].value),
"number_of hosts": 0,
"hosts": "",
"hosting_organization": document.forms["eventEditForm"]["hostingorg"].value,
"organizer_id": 1

I3

const res = await fetch(database_url + 'Jevent/update/' + this.state.current_event.event_id, {
method: "POST",
headers: {
'Accept'’: "application/json’,

56

"Content-Type": "application/json"
h
body: JSON.stringify(eventinfo)
»

this.editModalToggle();
this.refreshPage();

}
async finalizePairingsToggle(event){
if (Ithis.state.finalizePairingsModal)

let val = event.target.value;

const res = await fetch(database_url + '/fevent/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"
)
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));

/Iconsole.log(data);

this.setState(prevState => ({
finalizePairingsModal: !prevState.finalizePairingsModal

Ny
}

async visitorSignupToggle(event){
if (Ithis.state.visitorSignupModal)
{

let val = event.target.value;

const res = await fetch(database_url + /event/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"
)]
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));

/Iconsole.log(data);

this.setState(prevState => ({
visitorSignupModal: IprevState.visitorSignupModal
)

}
async deleteModalToggle(event){
if (this.state.deleteModal)

{

let val = event.target.value;

const res = await fetch(database_url + /event/' + val, {

57

method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"
)
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));

/Iconsole.log(data);

this.setState(prevState => ({
deleteModal: !prevState.deleteModal
D)

}
async editModalToggle(event) {

this.setState(state => ({ visitorEmails: ""}));
/lthis.setState(state => ({ current_event: event.target.value}));
if (this.state.editModal)

{

let val = event.target.value;

const res = await fetch(database_url + '/fevent/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin™: "*"
)]
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));

this.setState(prevState => ({
editModal: IprevState.editModal

D)
async addEvent(){
if (document.forms["eventCreateForm"]["eventname"].value ==="" ||
document.forms["eventCreateForm"]["starttime"].value === "" || document.forms["eventCreateForm"]["startdate"].value
===""|| document.forms["eventCreateForm"]["endtime"].value ==="" ||
document.forms["eventCreateForm"]["enddate"].value === "" || document.forms["eventCreateForm"]["description"].value

|| document.forms["eventCreateForm"]["location"].value ==="" ||
document.forms["eventCreateForm"]["expectednum”].value ==="" ||
document.forms["eventCreateForm"]["hostingorg"].value ==="")

alert("All fields are required!");
return;

if (isNaN(parselnt(document.forms["eventCreateForm"]["expectednum"].value)))

alert("Expected number of visitors must be an integer!");
return;

}

const res1 = await fetch(database_url + '/event_organizer/netidVerify/' + Cookies.get('netid’), {

58

method: "GET",

headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"

)

var data = await res1.json()
var organizer_id = data['event_organizer_id']

let eventinfo = {
"name": document.forms["eventCreateForm"]["eventname"].value,
"start_time": document.forms["eventCreateForm"]["starttime"].value,
"start_date": document.forms["eventCreateForm"]["startdate"].value,
"end_time": document.forms["eventCreateForm"]["endtime"].value,
"end_date": document.forms["eventCreateForm"]["enddate"].value,
"description": document.forms["eventCreateForm"]["description"].value,
"location": document.forms["eventCreateForm"]["location"].value,
"expected_number_visitors": parselnt(document.forms["eventCreateForm"]["expectednum"].value),
"number_of_hosts": 0,
"hosts": "",
"hosting_organization": document.forms["eventCreateForm"]["hostingorg"].value,
"organizer_id": organizer_id,
"organizer_netid": String(Cookies.get('netid"))};

const res = await fetch(database_url + 'Jevent’, {
method: "POST",
headers: {
'Accept'’: "application/json’,
"Content-Type": "application/json"

}
»;

ody: JSON.stringify(eventinfo)

this.toggle();
this.refreshPage();
}
handleFiles = files => {
var reader = new FileReader();
var result = [J;
reader.onload = function(e) {
/I Use reader.result
result = reader.result.split("\n")

alert(result[1])

1

this.setState(state => ({ visitorEmails: result}));
reader.readAsText(files[0]);

toggle() {
this.setState(prevState => ({

modal: !prevState.modal
)
if (this.state.modal)
this.setState(state => ({ visitorEmails: "}));
}
async verifyUser(){
var verified = false;
var netid = String(Cookies.get('netid"));

const session_current_organizer = await fetch(database_url + '/fevent_organizer/netidVerify/' + netid, {
method: "GET",
headers: {
"Content-Type": "text/plain",

nonkn

"Access-Control-Allow-Origin™:

59

)

var resp = await session_current_organizer.json();
resp = JSON.stringify(resp);

if (String(resp) ==="{}")
{

[Iverified = true;
/lthis.setState(state => ({ user_verified: true}));
Router.push('/eventOrganizerRegister')

}
static async getlinitialProps({req}){

var verified = false;
var netid = String(Cookies.get('netid"));

/lconsole.log(netid);

const session_current_organizer = await fetch(database_url + '/event_organizer/netidVerify/' + netid, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin": "*"

)

var resp = await session_current_organizer.json();
resp = JSON.stringify(resp);

console.log(resp);
if (String(resp) !=="{}")
{

verified = true;
/lthis.setState(state => ({ user_verified: true}));

}

const res1 = await axios({
url: server_url + '/netid’,
/I manually copy cookie on server,
/I let browser handle it automatically on client
headers: req ? {cookie: req.headers.cookie} : undefined,

»

const res2 = await fetch(database_url + '/event/organizersEvents/netid/' + res1.data.netid, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var data = await res2.json()
data = JSON:.stringify(data)

data = JSON.parse(data)

/lconsole.log(data)

let descriptions =[]
let end_dates =]

60

let end_times =[]

let expected_number_visitors =[]
let hosting_organizations = []
let locations =[]

let names =]

let number_of hosts =[]

let start_dates =[]

let start_times =[]

let eventsHostSignup =[]

let eventsVisitorSignup =[]
let eventsClosedSignup = []
let resArray =[]

for (leti = 0; i < data.length; i++)

{
/I events.push(JSON.stringify(datali]))
if (data[i]['event_stage'] == 0)

{
eventsHostSignup.push(JSON.stringify(datali]))
else if (data[i]['event_stage'l == 1)

eventsVisitorSignup.push(JSON.stringify(datali]))
}

else

eventsClosedSignup.push(JSON.stringify(datali]))
}
}

return {

descriptions: descriptions,

end_dates: end_dates,

end_times: end_times,
expected_number_visitors: expected_number_visitors,
hosting_organizations: hosting_organizations,
locations: locations,

names: names,

number_of _hosts: number_of_hosts,
start_dates: start_dates,

start_times: start_times,
eventsHostSignup:eventsHostSignup,
eventsVisitorSignup:eventsVisitorSignup,
eventsClosedSignup:eventsClosedSignup,
userVerified: verified

}
render(props)
this.verifyUser();
return(
<div>
<Head title="My Events" />

<NavBar />

<div className="hero">
<center> <h2 style={divStyle}> My Events </h2> </center>

<Button color="light" onClick={this.toggle}> Create a new event </Button>

<Modal key="1" isOpen={this.state.modal} toggle={this.toggle} className={this.props.className}>

<ModalHeader toggle={this.toggle} color="primary"> <p className="text-primary">Create an

Event</p></ModalHeader>
<ModalBody>

<Form id="eventCreateForm">

<Row> <Col> Event Name: </Col> <Col> <Input type="text" name="eventname" id="eventname"/> </Col> </Row>

<Row>
<Col>
Start Date
</Col>
<Col>

<Input type="date" name="startdate" id="startdate"/>

</Col>
<Col>
Start Time
</Col>
<Col>

<Input type="time" name="starttime" id="starttime"/>

</Col>
</Row>

<Row>
<Col>
End Date
</Col>
<Col>

<Input type="date" name="enddate" id="enddate"/>

</Col>
<Col>
End Time
</Col>
<Col>

<Input type="time" name="endtime" id="endtime"/>

</Col>
</Row>

<Row>
<Col>

Expected Attendance

</Col>
<Col>

<Input type="text" name="expectednum" id="expectednum"/>

</Col>

<Col> Location </Col>
<Col> <Input type="text" name="location" id="location"/> </Col>

</Row>

<Row>

<Col>

Hosting Organization
</Col>

<Col>

<Input type="text" name="hostingorg" id="hostingorg"/>

</Col>
</Row>

Please add a brief description of the event: <Input type="textarea" name="description" id="description" />

</Form>

</ModalBody>
<ModalFooter>

<Button color="primary" onClick={this.addEvent}>Create Event</Button>{' '}
<Button color="secondary" onClick={this.toggle}>Cancel</Button>

</ModalFooter>
</Modal>

62

<Modal key="2" isOpen={this.state.editModal} toggle={this.editModalToggle} className={this.props.className}>

<ModalHeader toggle={this.editModalToggle}> <p className="text-primary"> Edit {this.state.current_event.name}

</p></ModalHeader>

<ModalBody>
<Form id="eventEditForm">
<Row> <Col> Event Name: </Col> <Col> <Input type="text" name="eventname" id="eventname"

defaultValue={this.state.current_event.name}/> </Col> </Row>

<Row>

<Col>

Start Date

</Col>

<Col>

<Input type="date" name="startdate" id="startdate" defaultValue={this.state.current_event.start_date}/>
</Col>

<Col>

Start Time

</Col>

<Col>

<Input type="time" name="starttime" id="starttime" defaultValue={this.state.current_event.start_time}/>
</Col>

</Row>

<Row>

<Col>

End Date

</Col>

<Col>

<Input type="date" name="enddate" id="enddate" defaultValue={this.state.current_event.end_date}/>
</Col>

<Col>

End Time

</Col>

<Col>

<Input type="time" name="endtime" id="endtime" defaultValue={this.state.current_event.end_time}/>
</Col>

</Row>

<Row>

<Col>

Expected Attendance

</Col>

<Col>

<Input type="text" name="expectednum" id="expectednum"

defaultValue={this.state.current_event.expected_number_visitors}/>

</Col>
<Col> Location </Col>

<Col> <Input type="text" name="location" id="location" defaultValue={this.state.current_event.location}/> </Col>

</Row>

<Row>

<Col>

Hosting Organization

</Col>

<Col>

<Input type="text" name="hostingorg" id="hostingorg"

defaultValue={this.state.current_event.hosting_organization}/>

</Col>

</Row>

Please add a brief description of the event: <Input type="textarea" name="description" id="description"

defaultValue={this.state.current_event.description}/>

</Form>

63

</ModalBody>
<ModalFooter>
<Button color="primary" onClick={this.editEvent}>Update Event</Button>{' '}
<Button color="secondary" onClick={this.editModalToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<Modal key="3" isOpen={this.state.deleteModal} toggle={this.deleteModalToggle}
className={this.props.className}>
<ModalHeader toggle={this.deleteModalToggle}> <p className="text-danger"> Delete
{this.state.current_event.name} </p></ModalHeader>
<ModalBody>
Are you sure you want to delete this event?
</ModalBody>
<ModalFooter>
<Button color="danger" onClick={this.deleteEvent}>Delete Event</Button>{' "}
<Button color="secondary" onClick={this.deleteModalToggle}>Cancel</Button>
</ModalFooter>
</Modal>
<Modal key="4" isOpen={this.state.visitorSignupModal} toggle={this.visitorSignupToggle}
className={this.props.className}>
<ModalHeader toggle={this.visitorSignupToggle}> <p className="text-success"> Begin Visitor Signup for
{this.state.current_event.name} </p></ModalHeader>
<ModalBody>
Are you sure you want to begin visitor signup for this event?
</ModalBody>
<ModalFooter>
<Button color="success" onClick={this.beginVisitorSignup}>Begin Visitor Signup</Button>{"' "}
<Button color="secondary" onClick={this.visitorSignupToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<Modal key="5" isOpen={this.state.finalizePairingsModal} toggle={this.finalizePairingsToggle}
className={this.props.className}>
<ModalHeader toggle={this.finalizePairingsToggle}> <p className="text-success"> Finalize Pairings for
{this.state.current_event.name} </p></ModalHeader>
<ModalBody>

Are you sure you want to finalize pairings for this event? Hosts and visitors will no longer be able to sign up.

</ModalBody>
<ModalFooter>
<Button color="success" onClick={this.finalizePairings}>Finalize Pairings</Button>{" '}
<Button color="secondary" onClick={this.finalizePairingsToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<Modal key="6" isOpen={this.state.viewDetailsModal} toggle={this.viewDetailsToggle}
className={this.props.className}>
<ModalHeader toggle={this.viewDetailsToggle}> <p className="text-success"> View Pairing Details for
{this.state.current_event.name} </p></ModalHeader>
<ModalBody>
{this.state.pairings_for_event}
</ModalBody>
<ModalFooter>
<Button color="secondary" onClick={this.viewDetailsToggle}>Exit</Button>
</ModalFooter>
</Modal>

<Nav tabs>
<Navltem>
<NavLink
active={this.state.activeTab ==="1"}
onClick={() => { this.toggleTab('1"); }}
>
Pending

64

</NavLink>
</Navltem>
<Navltem>
<NavLink
active={this.state.activeTab === '2'}
onClick={() => { this.toggleTab('2'); }}
>
Visitor Signup in Progress
</NavLink>
</Navltem>
<Navltem>
<NavLink
active={this.state.activeTab === '3"}
onClick={() => { this.toggleTab('3"); }}
>
Completed
</NavLink>
</Navltem>
</Nav>

<TabContent activeTab={this.state.activeTab}>
<TabPane tabld="1">

<CardDeck>
{this.props.eventsHostSignup.map((value, index) => {

let jsonVal = JSON.parse(value)

return <div key={index}>
<Card className="card bg-light mb-3" key={index}>

<CardHeader key="0"> <center> {jsonVal['name']} </center> </CardHeader>

{I* <p key="1"> Hosting Organization: {jsonVal['hosting_organization']} </p>
<p key="2"> Start Date: {jsonVal['start_date']} </p>
<p key="3"> Start Time: {jsonVal['start_time']} </p>
<p key="4"> End Date: {jsonVal['end_date']} </p>
<p key="5"> End Time: {jsonVal['end_time']} </p>
<p key="6"> Location: {jsonVal['location']} </p> */}

<Row>

<Col> <Button color="danger" key="10" size="sm" value={jsonVal['event_id']}
onClick={this.deleteModalToggle}> Cancel Event </Button> </Col>

<Col> <Button color="primary" key="8" size="sm" value={jsonVal['event_id']} onClick={this.editModalToggle}>
Edit Event </Button> </Col>

<Col> <Button color="success" key="9" size="sm" value={jsonVal['event_id']}
onClick={this.visitorSignupToggle}> Begin Visitor Signup</Button> </Col>

</Row>

</Card>
</div>

)
</CardDeck>
</TabPane>

<TabPane tabld="2">
<CardDeck>
{this.props.eventsVisitorSignup.map((value, index) => {
let jsonVal = JSON.parse(value)
return <div key={index}>
<Card className="card bg-light mb-3" key={index}>
<CardHeader key="0"> <center> {jsonVal['name']} </center> </CardHeader>

{I* <p key="1"> Hosting Organization: {jsonVal['hosting_organization']} </p>
<p key="2"> Start Date: {jsonVal['start_date']} </p>
<p key="3"> Start Time: {jsonVal['start_time']} </p>
<p key="4"> End Date: {jsonVal['end_date']} </p>

65

<p key="5"> End Time: {jsonVal['end_time']} </p>
<p key="6"> Location: {jsonVal['location']} </p> */}

<Row>

<Col> <Button color="danger" key="10" size="sm" value={jsonVal['event_id'[}
onClick={this.deleteModalToggle}> Cancel Event </Button> </Col>

<Col> <Button color="primary" key="8" size="sm" value={jsonVal['event_id']} onClick={this.editModalToggle}>
Edit Event </Button> </Col>

<Col> <Button color="success" key="9" size="sm" value={jsonVal['event_id'T}
onClick={this.finalizePairingsToggle}> Finalize Pairings</Button> </Col>

</Row>

</Card>
</div>

)
</CardDeck>
</TabPane>
<TabPane tabld="3">
<CardDeck>
{this.props.eventsClosedSignup.map((value, index) => {
let jsonVal = JSON.parse(value)
return <div key={index}>
<Card className="card bg-light mb-3" key={index}>
<CardHeader key="0"> <center> {jsonVal['name']} </center> </CardHeader>

{I* <p key="1"> Hosting Organization: {jsonVal['hosting_organization']} </p>
<p key="2"> Start Date: {jsonVal['start_date']} </p>
<p key="3"> Start Time: {jsonVal['start_time']} </p>
<p key="4"> End Date: {jsonVal['end_date']} </p>
<p key="5"> End Time: {jsonVal['end_time']} </p>
<p key="6"> Location: {jsonVal['location']} </p> */}

<Row>

<Col> <Button color="danger" key="10" size="sm" value={jsonVal['event_id']}
onClick={this.deleteModalToggle}> Cancel Event </Button> </Col>

<Col> <Button color="primary" key="8" size="sm" value={jsonVal['event_id']} onClick={this.editModalToggle}>
Edit Event </Button> </Col>

<Col> <Button color="success" key="9" size="sm" value={jsonVal['event_id']} onClick={this.viewDetailsToggle}>
View Matchings </Button> </Col>

</Row>

</Card>
</div>

)
</CardDeck>
</TabPane>

</TabContent>
</div>
<style jsx>{

.hero {
width: 100%;
color: #333;

}

title {
margin: 0;
width: 100%;
padding-top: 80px;
line-height: 1.15;
font-size: 48px;

}

title,

66

.description {
text-align: center;
}
.row {
max-width: 880px;
margin: 80px auto 40px;
display: flex;
flex-direction: row;
justify-content: space-around;
}
.card {
padding: 18px 18px 24px;
width: 220px;
text-align: left;
text-decoration: none;
color: #434343;
border: 1px solid #9b9b9b;
}
.card:hover {
border-color: #067df7;

}

.card h3 {
margin: 0;
color: #067df7;
font-size: 18px;

}

.card p {
margin: 0;
padding: 12px 0 O;
font-size: 13px;
color: #333;

}

“I</style>
</div>

M

export default eventList

hostAllEvents.js
import './bootstrap.css';
import React from 'react'
import Link from 'next/link'
import Head from '../components/head'
import HostNav from '../components/hostNav'
import fetch from 'isomorphic-unfetch'’
import { Button, Modal, ModalHeader, ModalBody, ModalFooter, Row, Col, Input, Form, FormText, CustomInput } from
'reactstrap’;
import { Card, Cardimg, CardHeader, CardText, CardBody, CardTitle, CardSubtitle, CardDeck, FormGroup, Label} from
'reactstrap’;
import ReactFileReader from 'react-file-reader’;
import Cookies from ‘js-cookie';

import Router from 'next/router’

const database_url = "https://tigernest-backend.herokuapp.com”
const server_url = "https://tiger-nest2.herokuapp.com"

var divStyle = {
color: 'white'
/lcolor: 'dodgerblue’

%

67

var divStyle1 = {
color: 'black’
/Icolor: 'dodgerblue’

3
const axios = require(‘axios');

class eventListHost extends React.Component {
constructor(props, context){

super(props, context);

this.state = {
modal: false,
addHostModal: false,
visitorEmails: [],
current_event: {

name:™,

start_time:"",

end_time:"",
description:"",
hosting_organization:"™",
expected_number_visitors:"",
event_id:""
}
b
this.addHostToggle = this.addHostToggle.bind(this);
this.addHost = this.addHost.bind(this);
this.editEvent = this.editEvent.bind(this);
this.handleFiles = this.handleFiles.bind(this);
this.refreshPage = this.refreshPage.bind(this);

}
refreshPage(){
window.location.reload();

async editEvent(){
console.log(this.state.visitorEmails)

let eventinfo = {
"name": document.forms["eventEditForm"]["eventname"].value,
"start_time": document.forms["eventEditForm"]["starttime"].value,
"start_date": document.forms["eventEditForm"]["startdate"].value,
"end_time": document.forms["eventEditForm"]["endtime"].value,
"end_date": document.forms["eventEditForm"]["enddate"].value,
"description": document.forms["eventEditForm"]["description"].value,
"location": document.forms["eventEditForm"]["location"].value,
"expected_number_visitors": parselnt(document.forms["eventEditForm"]["expectednum”].value),
"number_of hosts": 0,
"hosts": "",
"hosting_organization": document.forms["eventEditForm"]["hostingorg"].value,
"organizer_id": 1,};

const res = await fetch(database_url + '/event/update/' + this.state.current_event.event_id, {
method: "PUT",
headers: {
'Accept'’: 'application/json’,
"Content-Type": "application/json"

}
»;

this.editModalToggle();
this.refreshPage();

ody: JSON.stringify(eventinfo)

async addHostToggle(event) {

68

this.setState(state => ({ visitorEmails: ""}));
/lthis.setState(state => ({ current_event: event.target.value}));
if (Ithis.state.addHostModal)

{

let val = event.target.value;

const res = await fetch(database_url + Jevent/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin™: "*"
M
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_event: data}));

/Iconsole.log(data);

this.setState(prevState => ({
addHostModal: !prevState.addHostModal

)k

async addHost(){
let genderVal ="
let host_gender =""
try {
genderVal = document.forms["hostSignupForm"]["radio1"].value;
host_gender = document.forms["hostSignupForm"]["radio2"].value;
}
catch(err) {
alert("All fields are required");
return;

}

if (document.forms["hostSignupForm"]["firstname"].value ===

|| document.forms["hostSignupForm"]["lastname"].value
|| document.forms["hostSignupForm"]["roomnum"”].value === ""||
document.forms["hostSignupForm"]["maxvisitors"].value === "" || document.forms["hostSignupForm"]["cellnum"].value ===
")

{

alert("All fields are required");
return;

}

if (isNaN(parselnt((document.forms["hostSignupForm"]["maxvisitors"].value))))

alert("Max Visitors must be an integer!");
return;

}

let same_gender = genderVal === "yes" ? false : true;
/lconsole.log(this.state.visitorEmails)
let pairingInfo = {
"host_first_name": document.forms["hostSignupForm"]["firstname"].value,
"host_last_name": document.forms["hostSignupForm"]["lastname"].value,
"host_netid": String(Cookies.get('netid')),
"host_gender": host_gender,
"same_gender_room": same_gender,
"host_room_num": document.forms["hostSignupForm"]["roomnum"”].value,

69

"max_visitors": document.forms["hostSignupForm"]["maxuvisitors"].value,
"visitor_list": {},

"host_cellphone": document.forms["hostSignupForm"]["cellnum"].value,
"event_id": this.state.current_event.event_id,

"event_name": this.state.current_event.name

I

const res = await fetch(database_url + '/pairing’, {
method: "POST",
headers: {
'Accept’: 'application/json’,
"Content-Type": "application/json"
b
body: JSON.stringify(pairingInfo)
»

this.addHostToggle();
this.refreshPage();
/lthis.getlnitialProps();

handleFiles = files => {
var reader = new FileReader();
var result = [J;
reader.onload = function(e) {
/I Use reader.result
result = reader.result.split(",")

alert(result[0])

}

this.setState(state => ({ visitorEmails: result}));
reader.readAsText(files[0]);

toggle() {
this.setState(prevState => ({

modal: !prevState.modal
)
if (this.state.modal)
this.setState(state => ({ visitorEmails: "}));
}

static async getlInitialProps({req} X
/lconst res1 = await fetch('http://localhost:5000/")

const res1 = await axios({
url: server_url + '/netid’,
/I manually copy cookie on server,
/I let browser handle it automatically on client
headers: req ? {cookie: req.headers.cookie} : undefined,
i
const res2 = await fetch(database_url + '/pairing/events_for_host/" + res1.data.netid, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"

)

var data2 = await res2.json()
data2 = JSON.stringify(data2)

data2 = JSON.parse(data2)
let eventsHost =[]

for(leti = 0; i < data2.length; i++)
{

70

eventsHost.push(data2[i]['event_id")
}

/lconsole.log(res1.data)

const res = await fetch(database_url + '/event/sort_date’, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var data = await res.json()
data = JSON.stringify(data)

data = JSON.parse(data)
/lconsole.log(data)

/*
Get all the events that the host is in, put this in a table.
Make sure that they do not sign up twice for the same event.
Events that they already signed up for should have a "drop event" option.

*/

let descriptions =[]

let end_dates =]

let end_times =]

let expected_number_visitors =[]
let hosting_organizations =[]
let locations =[]

let names =[]

let number_of_hosts =[]

let start_dates =]

let start_times =[]

let events =]

for (leti = 0; i < data.length; i++)

if (leventsHost.includes(data[i]['event_id']) && (data[i]['event_stage'] == 0 || data[i]['event_stage'] == 1))
events.push(JSON.stringify(datali]));
}

return {

descriptions: descriptions,

end_dates: end_dates,

end_times: end_times,
expected_number_visitors: expected_number_visitors,
hosting_organizations: hosting_organizations,
locations: locations,

names: names,

number_of_hosts: number_of_hosts,
start_dates: start_dates,

start_times: start_times,

events:events,

data: res1.data

}

[*return {
description: data['description’],
end_date: data['end_date'],
end_time: data['end_time'],
expected_number_visitors: data['expected_number_visitors'],
hosting_organization: data['hosting_organization'],
location: data['location’],

71

name: data['name'],
number_of_hosts: data['number_of_hosts'],
start_date: data['start_date'],
start_time: data['start_time']
3

}

render(props)
/lconsole.log(this.props.data);
return(

<div>

<Head title="Host Events" />
<HostNav />

<div className="hero">
<center> <h2 style={divStyle}> Host for an event!</h2> </center>

<Modal key="1" isOpen={this.state.addHostModal} toggle={this.addHostToggle} className={this.props.className}>

<ModalHeader toggle={this.addHostToggle}> <p className="text-primary"> Host for
{this.state.current_event.name} </p> </ModalHeader>

<ModalBody>

<Form id="hostSignupForm">

<Row>

<Col>

First Name

</Col>

<Col>

<Input type="text" name="firstname" id="firstname"/>

</Col>

</Row>

<Row>

<Col>

Last Name

</Col>

<Col>

<Input type="text" name="lastname" id="lastname"/>

</Col>

</Row>

<Row>

<Col>

Room Number (Ex: Little Hall 99)

</Col>

<Col>

<Input type="text" name="roomnum" id="roomnum"/>

</Col>

</Row>

<Row>

<Col>

Cellphone Number:

</Col>

<Col>

<Input type="text" name="cellnum" id="cellnum"/>

</Col>

</Row>

<Row>

<Col>

Max Number of Visitors:

</Col>

<Col>

<Input type="text" name="manxvisitors" id="maxvisitors"/>

72

</Col>
</Row>

<Row>
<Col> Gender </Col>
<Col>
<FormGroup check>
<Label check>
<Input type="radio" name="radio2" id="radio2" value="Male"/>{" "}
Male
</Label>
</FormGroup>
<FormGroup check>
<Label check>
<Input type="radio" name="radio2" id="radio2" value="Female"/>{" "}
Female
</Label>
</FormGroup>
</Col>
</Row>

<Row>
<Col> Opposite Gender Visitors</Col>
<Col>
<FormGroup check>
<Label check>
<Input type="radio" name="radio1" id="radio1" value="yes"/>{" "}
Yes
</Label>
</FormGroup>
<FormGroup check>
<Label check>
<Input type="radio" name="radio1" id="radio1" value="no"/>{' '}
No
</Label>
</FormGroup>
</Col>
</Row>

</Form>
</ModalBody>
<ModalFooter>
<Button color="primary" onClick={this.addHost}> Sign Up</Button>{" '}
<Button color="secondary" onClick={this.addHostToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<CardDeck>
{this.props.events.map((value, index) => {
let jsonVal = JSON.parse(value)
return <div key={index}>
<Card className="card bg-light mb-3" key={index}>
<CardHeader key="0"> <center> {jsonVal['name']} </center> </CardHeader>

{I* <p key="1"> Hosting Organization: {jsonVal['hosting_organization']} </p>

<p key="2"> Start Date: {jsonVal['start_date']} </p>

<p key="3"> Start Time: {jsonVal['start_time']} </p>

<p key="4"> End Date: {jsonVal['end_date']} </p>

<p key="5"> End Time: {jsonVal['end_time']} </p>

<p key="6"> Location: {jsonVal['location']} </p> */}

<center> <p key="2"> {jsonVal['start_date']} to {jsonVal['end_date']} </p> </center>
<center> <p key="3"> {jsonVal['location]} </p> </center>

<center> <p key="4"> {jsonVal['start_time'l} </p> </center>

73

</Button>
</Card>
</div>

)
</CardDeck>
</div>
<style jsx>{
.hero {
width: 100%;
color: #333;
}
title {
margin: 0;
width: 100%;
padding-top: 80px;
line-height: 1.15;
font-size: 48px;
}
title,
.description {
text-align: center;
}
.row {
max-width: 880px;
margin: 80px auto 40px;
display: flex;
flex-direction: row;
justify-content: space-around;
}
.card {
padding: 30px 30px 30px;
width: 300px;
text-align: left;
text-decoration: none;
color: #434343;
border: 1px solid #9b9b9b;
}
.card:hover {
border-color: #067df7;

.card h3 {
margin: 0;
color: #067df7;
font-size: 18px;

}

.card p {
margin: 0;
padding: 12px 0 O;
font-size: 13px;
color: #333;

“I</style>
</div>

)
}

export default eventListHost

<Button color="primary" key="8" value={jsonVal['event_id']} onClick={this.addHostToggle}> Sign up to host

74

hostMyEvents.js
import "./bootstrap.css';
import React from 'react'
import Link from 'next/link'
import Head from '../components/head'
import HostNav from '../components/hostNav'
import fetch from 'isomorphic-unfetch’
import { Button, Modal, ModalHeader, ModalBody, ModalFooter, Row, Col, Input, Form, FormText, Custominput } from
'reactstrap’;
import { Card, Cardlmg, CardText, CardBody, CardTitle, CardSubtitle, CardDeck, FormGroup, Label, Table} from
'reactstrap’;
import ReactFileReader from 'react-file-reader’;
import Cookies from ‘js-cookie';

import Router from 'next/router’

/lconst database_url = "http://localhost:5000"
const database_url = "https://tigernest-backend.herokuapp.com"

/lconst server_url = "http://localhost:3000"
const server_url = "https://tiger-nest2.herokuapp.com”

var divStyle = {
color: 'white'
/Icolor: 'dodgerblue’

3
const axios = require(‘axios');

class eventListHost extends React.Component {
constructor(props, context){
super(props, context);
this.state = {
modal: false,
dropEventModal: false,
addHostModal: false,
visitorEmails: [],
current_pairing: -1,
eventList: [],
viewDetailsModal: false,
visitor_list: [],
male_true: false,
female_true: false,
same_gender_yes: false,
same_gender_no: false,
current_event_name: "",
current_event: {

name:"",
start_time:"",
end_time:"",

description:"",
hosting_organization:"",
expected_number_visitors:"",

event_id:""

}
h
this.addHostToggle = this.addHostToggle.bind(this);
this.addHost = this.addHost.bind(this);
this.editEvent = this.editEvent.bind(this);
this.handleFiles = this.handleFiles.bind(this);
this.dropEventToggle = this.dropEventToggle.bind(this);
this.dropEvent = this.dropEvent.bind(this);
this.filterEvents = this.filterEvents.bind(this);
this.viewDetailsToggle = this.viewDetailsToggle.bind(this);
this.refreshPage = this.refreshPage.bind(this);

}
refreshPage(){

window.location.reload();
}
async viewDetailsToggle(){
if (this.state.viewDetailsModal)

let val = event.target.value;

const res = await fetch(database_url + '/visitor_pairing/all_hosts/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"

1

var data = await res.json()

let visitornames =[]

for(let i = 0; i < data.length; i++)

let visitor_id = datal[i]['visitor_id']
let resVisitor = await fetch(database_url + ‘/visitor/' + visitor_id, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"
)
var dataVisitor = await resVisitor.json()
dataVisitor = JSON.stringify(dataVisitor)
dataVisitor = JSON.parse(dataVisitor)
visitornames.push(String(dataVisitor['name'] + "\n"))

}

/ldata = JSON.stringify(data);
/ldata = JSON.parse(data);
this.setState(state => ({ visitor_list: visitornames}));

}

this.setState(prevState => ({
viewDetailsModal: !prevState.viewDetailsModal

)}

}
async editEvent(){
console.log(this.state.visitorEmails)

let eventinfo = {
"name": document.forms["eventEditForm"]["eventname"].value,
"start_time": document.forms["eventEditForm"]["starttime"].value,
"start_date": document.forms["eventEditForm"]["startdate"].value,
"end_time": document.forms["eventEditForm"]["endtime"].value,
"end_date": document.forms["eventEditForm"]["enddate"].value,
"description": document.forms["eventEditForm"]["description"].value,
"location": document.forms["eventEditForm"]["location"].value,
"expected_number_visitors": parselnt(document.forms["eventEditForm"]["expectednum"].value),
"number_of_hosts": 0,
"hosts": ",
"hosting_organization": document.forms["eventEditForm"]["hostingorg"].value,
"organizer_id": 1,};

const res = await fetch(database_url + 'Jevent/update/' + this.state.current_event.event_id, {
method: "POST",
headers: {
'Accept'’: "application/json’,

76

"Content-Type": "application/json"
h
body: JSON.stringify(eventinfo)
»

this.editModalToggle();
this.refreshPage();

}

async dropEventToggle(event) {

[Ithis.setState(state => ({ visitorEmails: "}));
/lthis.setState(state => ({ current_event: event.target.value}));
if (Ithis.state.dropEventModal)

let val = event.target.value;

const res = await fetch(database_url + '/pairing/’ + val, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_pairing: data}));

/lconsole.log(data);

this.setState(prevState => ({
dropEventModal: !prevState.dropEventModal
)R

async addHostToggle(event) {

this.setState(state => ({ visitorEmails: "}));
/lthis.setState(state => ({ current_event: event.target.value}));
if (this.state.addHostModal)

let val = event.target.value;

const res = await fetch(database_url + /pairing/' + val, {
method: "GET",
headers: {
"Content-Type": "text/plain",
"Access-Control-Allow-Origin™: "*"
M
var data = await res.json()
data = JSON.stringify(data)
data = JSON.parse(data)
this.setState(state => ({ current_pairing: data}));

if (String(data['host_gender']) === "Male")

this.setState(state => ({ male_true: true}));
this.setState(state => ({ female_true: false}));

}

else

{
this.setState(state => ({ female_true: true}));
this.setState(state => ({ male_true: false}));

}

if ((data['same_gender_room'))

this.setState(state => ({ same_gender_yes: true}));
this.setState(state => ({ same_gender_no: false}));

}

else

this.setState(state => ({ same_gender_no: true}));
this.setState(state => ({ same_gender_yes: false}));
}
}

/Iconsole.log(data);

this.setState(prevState => ({
addHostModal: !prevState.addHostModal
)8

}
async dropEvent()}{

const res = await fetch(database_url + '/pairing/delete/' + this.state.current_pairing.pairing_id, {
method: "DELETE",
headers: {
'Accept’: "application/json’,
"Content-Type": "application/json"
}
M

this.dropEventToggle();
this.refreshPage();

}

async addHost()
/Nlet name = document.forms["eventCreateForm"]["eventname"].value;
/lconsole.log(name)

let genderVal ="
let host_gender =""

try {
genderVal = document.forms["hostSignupForm"]["radio1"].value;
host_gender = document.forms["hostSignupForm"]["radio2"].value;
}
catch(err) {
alert("All fields are required");

return;
}
if (document.forms["hostSignupForm"]["firstname"].value === "" || document.forms["hostSignupForm"]["lastname"].value
===""|| document.forms["hostSignupForm"]["roomnum"].value ==="" ||
document.forms["hostSignupForm"]["maxvisitors"].value === "" || document.forms["hostSignupForm"]["cellnum"].value ===
")
{
alert("All fields are required");
return;
}

if (isNaN(parselnt((document.forms["hostSignupForm"]["maxvisitors"].value))))

{

78

}

alert("Max Visitors must be an integer!");
return;

}

let same_gender = genderVal === "yes" ? true : false;
/lconsole.log(this.state.visitorEmails)
let pairingInfo = {
"host_first_name": document.forms["hostSignupForm"]["firstname"].value,
"host_last_name": document.forms["hostSignupForm"]["lastname"].value,
"host_gender": host_gender,
"same_gender_room": same_gender,
"host_room_num": document.forms["hostSignupForm"]["roomnum"].value,
"max_visitors": document.forms["hostSignupForm"]["maxuvisitors"].value,
"host_cellphone™: document.forms["hostSignupForm"]["cellnum"].value,
"event_id": this.state.current_event.event_id

h

const res = await fetch(database_url + '/pairing/update/' + this.state.current_pairing.pairing_id, {
method: "POST",
headers: {
'Accept'’: 'application/json’,
"Content-Type": "application/json"
b
body: JSON.stringify(pairingInfo)
W

this.addHostToggle();
this.refreshPage();

handleFiles = files => {

var reader = new FileReader();
var result = [J;

reader.onload = function(e) {

/I Use reader.result

result = reader.result.split(",")

alert(result[0])

this.setState(state => ({ visitorEmails: result}));

reader.readAsText(files[0]);

toggle() {

this.setState(prevState => ({
modal: !prevState.modal
N
if (this.state.modal)
this.setState(state => ({ visitorEmails: ""}));

async filterEvents()

{

var netid = String(Cookies.get('netid"));

const res = await fetch(database_url + '/pairing/events_for_host/' + netid, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var data = await res.json()
data = JSON.stringify(data)

data = JSON.parse(data)

let events =[]

79

for (leti = 0; i < data.length; i++)

[*descriptions.push(data[i]['description']);
end_dates.push(datali]['end_dates'])
end_times.push(datali]['end_times'])
expected_number_visitors.push(data[i]['expected_number_visitors'])
hosting_organizations.push(datal[i]['hosting_organizations')
locations.push(datali]['locations'])
names.push(data[i]['names'])
number_of _hosts.push(data[i]['number_of_hosts'])
start_dates.push(data[i]['start_date"])
start_times.push(data[i]['start_time')*/
events.push(JSON.stringify(datal[i]))
}

/lconsole.log(events)

this.setState({
eventList: events
»;
}
static async getlinitialProps({req} X
/lconst netid = Cookies.get('netid')
/*const res = await fetch('http://localhost:5000/pairing/events_for_host/' + netid, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
)
var data = await res.json()
data = JSON.stringify(data)

data = JSON.parse(data) */
/lconsole.log(data)

const res1 = await axios({
url: server_url + '/netid’,
/I manually copy cookie on server,
/I let browser handle it automatically on client
headers: req ? {cookie: req.headers.cookie} : undefined,

s

const res = await fetch(database_url + '/pairing/events_for_host/' + res1.data.netid, {
method: "GET",
headers: {
"Content-Type": "text/plain”,
"Access-Control-Allow-Origin": "*"
M
var data = await res.json()
data = JSON.stringify(data)

data = JSON.parse(data)

let descriptions =[]

let end_dates =]

let end_times =]

let expected_number_visitors =[]
let hosting_organizations = []
let locations =[]

let names =]

let number_of hosts =[]

let start_dates =[]

let start_times =[]

let events =[]

80

for(leti = O; i < data.length; i++)
{
events.push(datali]);

}

return {

descriptions: descriptions,

end_dates: end_dates,

end_times: end_times,
expected_number_visitors: expected_number_visitors,
hosting_organizations: hosting_organizations,
locations: locations,

names: names,

number_of_hosts: number_of_hosts,
start_dates: start_dates,

start_times: start_times,

events: events

}

[*return {
description: data['description'],
end_date: data['end_date'],
end_time: data['end_time'],
expected_number_visitors: data['expected_number_visitors'],
hosting_organization: data['hosting_organization'],
location: data['location'],
name: data['name'],
number_of_hosts: data['number_of hosts'],
start_date: data['start_date'],
start_time: data['start_time']

i

}

render(props)

[*this.setState({
eventList: this.filterEvents()
W
/Ithis filterEvents();
return(
<div>
<Head title="Host Events" />
<HostNav />

<div className="hero">

<center> <h2 style={divStyle}> Your Events</h2> </center>

<Modal key="1" isOpen={this.state.addHostModal} toggle={this.addHostToggle} className={this.props.className}>

<ModalHeader toggle={this.addHostToggle}> <p className="text-primary"> Edit Information for
{this.state.current_pairing.event_name} </p> </ModalHeader>

<ModalBody>

<Form id="hostSignupForm">

<Row>

<Col>

First Name:

</Col>

<Col>

<Input type="text" name="firstname" id="firstname" defaultValue={this.state.current_pairing.host_first_name}/ >

</Col>

</Row>

<Row>

81

<Col>
Last Name:
</Col>
<Col>
<Input type="text" name="lastname" id="lastname" defaultValue={this.state.current_pairing.host_last_name}/>
</Col>
</Row>

<Row>
<Col>
Room Number:
</Col>
<Col>
<Input type="text" name="roomnum" id="roomnum" defaultValue={this.state.current_pairing.host_room_num}/>
</Col>
</Row>

<Row>
<Col>
Cellphone Number:
</Col>
<Col>
<Input type="text" name="cellnum" id="cellnum" defaultValue={this.state.current_pairing.host_cellphone}/>
</Col>
</Row>

<Row>
<Col>
Max Number of Visitors:
</Col>
<Col>
<Input type="text" name="maxvisitors" id="manxvisitors" defaultValue={this.state.current_pairing.max_visitors}/>
</Col>
</Row>

<Row>
<Col> Gender </Col>
<Col>
<FormGroup check>
<Label check>
<Input type="radio" name="radio2" id="radio2" value="Male" defaultChecked={this.state.male_true} />{' '}
Male
</Label>
</FormGroup>
<FormGroup check>
<Label check>
<Input type="radio" name="radio2" id="radio2" value="Female" defaultChecked={this.state.female_true} />{" "}
Female
</Label>
</FormGroup>
</Col>
</Row>

<Row>
<Col> Opposite Gender Visitors</Col>
<Col>
<FormGroup check>
<Label check>
<Input type="radio" name="radio1" id="radio1" value="yes" defaultChecked={this.state.same_gender_yes} />{' '}
Yes
</Label>
</FormGroup>
<FormGroup check>
<Label check>
<Input type="radio" name="radio1" id="radio1" value="no" defaultChecked={this.state.same_gender_no} />{" '}
No

82

</Label>
</FormGroup>
</Col>
</Row>

</Form>
</ModalBody>
<ModalFooter>
<Button color="primary" onClick={this.addHost}> Update Info </Button>{""}
<Button color="secondary" onClick={this.addHostToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<Modal key="2" isOpen={this.state.dropEventModal} toggle={this.dropEventToggle}
className={this.props.className}>
<ModalHeader toggle={this.dropEventToggle}> <p className="text-danger"> Drop
{this.state.current_pairing.event_name} </p> </ModalHeader>
<ModalBody>

Are you sure you want to drop out of this event?

</ModalBody>

<ModalFooter>
<Button color="danger" onClick={this.dropEvent}> Drop Event</Button>{' '}
<Button color="secondary" onClick={this.dropEventToggle}>Cancel</Button>
</ModalFooter>
</Modal>

<Modal key="6" isOpen={this.state.viewDetailsModal} toggle={this.viewDetailsToggle}
className={this.props.className}>

<ModalHeader toggle={this.viewDetailsToggle}> <p className="text-success"> View Your Visitor List!
</p></ModalHeader>

<ModalBody>

{this.state.visitor_list}

</ModalBody>

<ModalFooter>

<Button color="secondary" onClick={this.viewDetailsToggle}>Exit</Button>
</ModalFooter>
</Modal>

<Table dark>
<tbody>

{this.props.events.map((value, index) => {
/lconsole.log("value" + value);

let jsonVal = value;

/et jsonVal = value;

let tableHead = "";

if (index == 0)

tableHead = "<thead> <tr> <th> Name </th> <th> your gender </th>"

}
return <div>
<tr key={index}>
<th key="0"> Event Name: {jsonVal['event_name']} </th>
<th key="3"> Maximum Visitors: {jsonVal['max_visitors']} </th>
<th key="6"> Cellphone: {jsonVal['host_cellphone']} </th>

<th> <Button color="light" key="8" value={jsonVal['pairing_id'} onClick={this.addHostToggle} size="sm" > Edit
Information </Button> </th>

<th> <Button color="danger" key="9" value={jsonVal['pairing_id"]} onClick={this.dropEventToggle} size="sm">
Drop Event </Button> </th>

<th> <Button color="success" key="9" value={jsonVal['pairing_id"]} onClick={this.viewDetailsToggle} size="sm">
View Visitors </Button> </th>

83

</tr>
</div>

h);
</tbody>

</Table>
</div>
<style jsx>{

.hero {
width: 100%;
color: #333;

}

title {
margin: 0;
width: 100%;
padding-top: 80px;
line-height: 1.15;
font-size: 48px;

}

title,

.description {
text-align: center;

}

.row {
max-width: 880px;
margin: 80px auto 40px;
display: flex;
flex-direction: row;
justify-content: space-around;

}

.card {
padding: 30px 30px 30px;
width: 300px;
text-align: left;
text-decoration: none;
color: #434343;
border: 1px solid #9b9b9b;

}

.card:hover {
border-color: #067df7;

}

.card h3 {
margin: 0;
color: #067df7;
font-size: 18px;

}

.card p {
margin: 0;
padding: 12px 0 O;
font-size: 13px;
color: #333;

}

I</style>
</div>

)
}

export default eventListHost

84

