Inductive Data Flow Graphs

Azadeh Farzan¹

Zachary Kincaid¹ Andreas Podelski²

¹University of Toronto ²University of Freiburg

January 23, 2013

Z. Kincaid (U. Toronto)

Given a (concurrent) program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$

(or provide a counter-example)

Given a (concurrent) program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

 $\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$

(or provide a counter-example)

· Static analysis for sequential programs

Given a (concurrent) program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

 $\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$

(or provide a counter-example)

- Static analysis for sequential programs
- Model checking for finite-state concurrent protocols

Given a (concurrent) program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

 $\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$

(or provide a counter-example)

- · Static analysis for sequential programs
- Model checking for finite-state concurrent protocols

This talk presents **Inductive Data Flow Graphs** (iDFGs): a form of correctness proof for (concurrent) programs

There are many proof systems: Floyd/Hoare, Owicki-Gries, Rely/Guarantee. Why do we want a new one?

There are many proof systems: Floyd/Hoare, Owicki-Gries, Rely/Guarantee. Why do we want a new one?

- Succinct
 - · Present only the essence of a proof
 - Polynomial in the data complexity of a program

There are many proof systems: Floyd/Hoare, Owicki-Gries, Rely/Guarantee. Why do we want a new one?

- Succinct
 - · Present only the essence of a proof
 - · Polynomial in the data complexity of a program
- · Can be generated and checked automatically
 - · Extend static analysis to concurrent control
 - Extend model checking to (unbounded) data

$$\varphi_{\mathbf{pre}}: \mathbf{x} \ge \mathbf{0} \land \mathbf{y} \ge \mathbf{0}$$

Thread 1	Thread 2
x ++	x = 2
у ++	
z = x + y	
$\varphi_{\mathbf{post}}: \mathbf{z} \geq 2$	

$$\begin{array}{c} \left\{ x \geq 0 \land y \geq 0 \right\} \\ (x + +) \\ \left\{ y \geq 0 \right\} \\ (x = 2) \\ \left\{ x \geq 1 \land y \geq 0 \right\} \\ (y + +) \\ \left\{ x \geq 1 \land y \geq 1 \right\} \\ z = x + y \\ \left\{ z \geq 2 \right\} \end{array}$$

y

Inductive Data Flow Graphs (iDFGs)

Inductiveness condition:

 $\psi_1 \qquad \psi_i \qquad \psi_m \\ \varphi_1 \qquad \varphi_j \qquad \varphi_n \qquad \text{for all } j, \{\psi_1 \land \dots \land \psi_m\} \text{cmd}_a\{\varphi_j\}$

Suppress irrelevant details of a partial correctness proof

Irrelevant ordering constraints

$$(x = 2; y ++ vs y ++; x = 2)$$

• Irrelevant actions (x ++)

Inductive Data Flow Graphs (iDFGs)

Inductiveness condition:

 $\psi_1 \qquad \psi_i \qquad \psi_m \\ (\operatorname{cmd}_a) \qquad \text{for all } j, \{\psi_1 \land \cdots \land \psi_m\} \operatorname{cmd}_a\{\varphi_j\}$

Parallelize a partial correctness proof

Irrelevant ordering constraints

$$(x = 2; y ++ vs y ++; x = 2)$$

• Irrelevant actions (x ++)

Data flow graph with inductive assertions (iDFG) proves correctness of traces that obey particular constraints

 \sim Control flow graph with inductive assertions (Floyd annotation) proves correctness of traces that label paths

The set of such traces is called the **denotation** of the iDFG, denoted $[\![G]\!]$.

Data flow graph with inductive assertions (iDFG) proves correctness of traces that obey particular constraints

 \sim Control flow graph with inductive assertions (Floyd annotation) proves correctness of traces that label paths

The set of such traces is called the **denotation** of the iDFG, denoted $\llbracket G \rrbracket$.

Data flow graph with inductive assertions (iDFG) proves correctness of traces that obey particular constraints

 \sim Control flow graph with inductive assertions (Floyd annotation) proves correctness of traces that label paths

The set of such traces is called the **denotation** of the iDFG, denoted $\llbracket G \rrbracket$.

Data flow graph with inductive assertions (iDFG) proves correctness of traces that obey particular constraints

 \sim Control flow graph with inductive assertions (Floyd annotation) proves correctness of traces that label paths

The set of such traces is called the **denotation** of the iDFG, denoted $\llbracket G \rrbracket$.

iDFGs as proof objects

Theorem

Let $G = \langle V, E, \varphi_{\text{pre}}, \varphi_{\text{post}}, v_o, V_{final} \rangle$ be an iDFG. For all $\tau \in \llbracket G \rrbracket$, $\{\varphi_{\text{pre}}\} \tau \{\varphi_{\text{post}}\}$

iDFGs as proof objects

Theorem

Let $G = \langle V, E, \varphi_{pre}, \varphi_{post}, v_o, V_{final} \rangle$ be an iDFG. For all $\tau \in \llbracket G \rrbracket$, $\{\varphi_{pre}\}\tau\{\varphi_{post}\}$

Program $P \sim$ finite automaton, $\mathcal{L}(P)$ is the set of *traces* of *P*.

iDFGs as proof objects

Theorem

Let $G = \langle V, E, \varphi_{pre}, \varphi_{post}, v_o, V_{final} \rangle$ be an iDFG. For all $\tau \in \llbracket G \rrbracket$, $\{\varphi_{pre}\}\tau\{\varphi_{post}\}$

Program $P \sim$ finite automaton, $\mathcal{L}(P)$ is the set of *traces* of *P*.

Proof rule Program *P* is correct w.r.t. $\varphi_{pre}/\varphi_{post}$ iff $\exists G.\mathcal{L}(P) \subseteq \llbracket G \rrbracket$ If there exists a small proof that *P* is correct (w.r.t. $\varphi_{pre}/\varphi_{post}$), then exists a small iDFG proof

If there exists a small proof that *P* is correct (w.r.t. $\varphi_{pre}/\varphi_{post}$), then exists a small iDFG proof

Theorem

For any $\{\varphi_{pre}\}P\{\varphi_{post}\}$, there exists a iDFG proof with size polynomial in the *data complexity* of $P, \varphi_{pre}, \varphi_{post}$

If there exists a small proof that *P* is correct (w.r.t. $\varphi_{pre}/\varphi_{post}$), then exists a small iDFG proof

Theorem

For any $\{\varphi_{pre}\}P\{\varphi_{post}\}$, there exists a iDFG proof with size polynomial in the *data complexity* of $P, \varphi_{pre}, \varphi_{post}$

Data complexity measures how difficult a property is to prove.

- Minimum # of assertions in a *localized proof* that $\{\varphi_{pre}\}P\{\varphi_{post}\}$
 - Localized proofs: expose "how compositional" a Floyd proof is.

Automation

Automation

Goal

Given a trace $\tau \in \mathcal{L}(P)$ with $\{\varphi_{\text{pre}}\} \tau \{\varphi_{\text{post}}\}$, construct an iDFG G_{τ} with $\tau \in [\![G_{\tau}]\!]$.

Z. Kincaid (U. Toronto)

Goal

Given a trace $\tau \in \mathcal{L}(P)$ with $\{\varphi_{\text{pre}}\} \tau \{\varphi_{\text{post}}\}$, construct an iDFG G_{τ} with $\tau \in [\![G_{\tau}]\!]$.

Z. Kincaid (U. Toronto)

Goal

Given a trace $\tau \in \mathcal{L}(P)$ with $\{\varphi_{pre}\} \tau \{\varphi_{post}\}$, construct an iDFG G_{τ} with $\tau \in [\![G_{\tau}]\!]$.

Goal

Given a trace $\tau \in \mathcal{L}(P)$ with $\{\varphi_{\text{pre}}\} \tau \{\varphi_{\text{post}}\}$, construct an iDFG G_{τ} with $\tau \in [\![G_{\tau}]\!]$.

Automation

Goal

Given iDFGs G_1 , G_2 , construct an iDFG $G_1 \land \land G_2$ such that

 $\llbracket G_1 \rrbracket \cup \llbracket G_2 \rrbracket \subseteq \llbracket G_1 \land \land G_2 \rrbracket$

Goal

Given iDFGs G_1 , G_2 , construct an iDFG $G_1 \land \land G_2$ such that

Goal

Given iDFGs G_1 , G_2 , construct an iDFG $G_1 \land \land G_2$ such that

Goal

Given iDFGs G_1 , G_2 , construct an iDFG $G_1 \land \land G_2$ such that

Automation

For any iDFG G, we can efficiently (linear time, in the size of G) construct an *alternating finite automaton* A_G such that

 $\mathcal{L}(A_G) = \llbracket G \rrbracket^{rev}$

Proof checking: $\mathcal{L}(P)^{rev} \stackrel{?}{\subseteq} \mathcal{L}(A_G)$

- Can be solved in PSPACE
- Combinatorial problem (non-reachability)
- · Reuse techniques from (finite-state) model checking

- Inductive Data Flow Graphs are a proof method for partial correctness of (concurrent) programs
- (Provably) succinct
- · Can be generated automatically

- **Inductive Data Flow Graphs** are a proof method for partial correctness of (concurrent) programs
- (Provably) succinct
- Can be generated automatically
- Future work
 - · Can iDFGs be constructed more effectively?
 - Efficient proof checking?
 - Parameterized programs?
 - Weak memory models?

Thank you for your attention.